|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | import traceback | 
					
						
						|  | import logging | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  | from time import time as ttime | 
					
						
						|  |  | 
					
						
						|  | import fairseq | 
					
						
						|  | import faiss | 
					
						
						|  | import numpy as np | 
					
						
						|  | import parselmouth | 
					
						
						|  | import pyworld | 
					
						
						|  | import scipy.signal as signal | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torchcrepe | 
					
						
						|  |  | 
					
						
						|  | from infer.lib.infer_pack.models import ( | 
					
						
						|  | SynthesizerTrnMs256NSFsid, | 
					
						
						|  | SynthesizerTrnMs256NSFsid_nono, | 
					
						
						|  | SynthesizerTrnMs768NSFsid, | 
					
						
						|  | SynthesizerTrnMs768NSFsid_nono, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | now_dir = os.getcwd() | 
					
						
						|  | sys.path.append(now_dir) | 
					
						
						|  | from multiprocessing import Manager as M | 
					
						
						|  |  | 
					
						
						|  | from configs.config import Config | 
					
						
						|  |  | 
					
						
						|  | config = Config() | 
					
						
						|  |  | 
					
						
						|  | mm = M() | 
					
						
						|  | if config.dml == True: | 
					
						
						|  |  | 
					
						
						|  | def forward_dml(ctx, x, scale): | 
					
						
						|  | ctx.scale = scale | 
					
						
						|  | res = x.clone().detach() | 
					
						
						|  | return res | 
					
						
						|  |  | 
					
						
						|  | fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RVC: | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | key, | 
					
						
						|  | pth_path, | 
					
						
						|  | index_path, | 
					
						
						|  | index_rate, | 
					
						
						|  | n_cpu, | 
					
						
						|  | inp_q, | 
					
						
						|  | opt_q, | 
					
						
						|  | device, | 
					
						
						|  | last_rvc=None, | 
					
						
						|  | ) -> None: | 
					
						
						|  | """ | 
					
						
						|  | 初始化 | 
					
						
						|  | """ | 
					
						
						|  | try: | 
					
						
						|  | global config | 
					
						
						|  | self.inp_q = inp_q | 
					
						
						|  | self.opt_q = opt_q | 
					
						
						|  |  | 
					
						
						|  | self.device = device | 
					
						
						|  | self.f0_up_key = key | 
					
						
						|  | self.time_step = 160 / 16000 * 1000 | 
					
						
						|  | self.f0_min = 50 | 
					
						
						|  | self.f0_max = 1100 | 
					
						
						|  | self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | 
					
						
						|  | self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | 
					
						
						|  | self.sr = 16000 | 
					
						
						|  | self.window = 160 | 
					
						
						|  | self.n_cpu = n_cpu | 
					
						
						|  | if index_rate != 0: | 
					
						
						|  | self.index = faiss.read_index(index_path) | 
					
						
						|  | self.big_npy = self.index.reconstruct_n(0, self.index.ntotal) | 
					
						
						|  | logger.info("Index search enabled") | 
					
						
						|  | self.pth_path = pth_path | 
					
						
						|  | self.index_path = index_path | 
					
						
						|  | self.index_rate = index_rate | 
					
						
						|  |  | 
					
						
						|  | if last_rvc is None: | 
					
						
						|  | models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( | 
					
						
						|  | ["assets/hubert/hubert_base.pt"], | 
					
						
						|  | suffix="", | 
					
						
						|  | ) | 
					
						
						|  | hubert_model = models[0] | 
					
						
						|  | hubert_model = hubert_model.to(device) | 
					
						
						|  | if config.is_half: | 
					
						
						|  | hubert_model = hubert_model.half() | 
					
						
						|  | else: | 
					
						
						|  | hubert_model = hubert_model.float() | 
					
						
						|  | hubert_model.eval() | 
					
						
						|  | self.model = hubert_model | 
					
						
						|  | else: | 
					
						
						|  | self.model = last_rvc.model | 
					
						
						|  |  | 
					
						
						|  | if last_rvc is None or last_rvc.pth_path != self.pth_path: | 
					
						
						|  | cpt = torch.load(self.pth_path, map_location="cpu") | 
					
						
						|  | self.tgt_sr = cpt["config"][-1] | 
					
						
						|  | cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | 
					
						
						|  | self.if_f0 = cpt.get("f0", 1) | 
					
						
						|  | self.version = cpt.get("version", "v1") | 
					
						
						|  | if self.version == "v1": | 
					
						
						|  | if self.if_f0 == 1: | 
					
						
						|  | self.net_g = SynthesizerTrnMs256NSFsid( | 
					
						
						|  | *cpt["config"], is_half=config.is_half | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | 
					
						
						|  | elif self.version == "v2": | 
					
						
						|  | if self.if_f0 == 1: | 
					
						
						|  | self.net_g = SynthesizerTrnMs768NSFsid( | 
					
						
						|  | *cpt["config"], is_half=config.is_half | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | 
					
						
						|  | del self.net_g.enc_q | 
					
						
						|  | logger.debug(self.net_g.load_state_dict(cpt["weight"], strict=False)) | 
					
						
						|  | self.net_g.eval().to(device) | 
					
						
						|  |  | 
					
						
						|  | if config.is_half: | 
					
						
						|  | self.net_g = self.net_g.half() | 
					
						
						|  | else: | 
					
						
						|  | self.net_g = self.net_g.float() | 
					
						
						|  | self.is_half = config.is_half | 
					
						
						|  | else: | 
					
						
						|  | self.tgt_sr = last_rvc.tgt_sr | 
					
						
						|  | self.if_f0 = last_rvc.if_f0 | 
					
						
						|  | self.version = last_rvc.version | 
					
						
						|  | self.net_g = last_rvc.net_g | 
					
						
						|  | self.is_half = last_rvc.is_half | 
					
						
						|  |  | 
					
						
						|  | if last_rvc is not None and hasattr(last_rvc, "model_rmvpe"): | 
					
						
						|  | self.model_rmvpe = last_rvc.model_rmvpe | 
					
						
						|  | except: | 
					
						
						|  | logger.warn(traceback.format_exc()) | 
					
						
						|  |  | 
					
						
						|  | def change_key(self, new_key): | 
					
						
						|  | self.f0_up_key = new_key | 
					
						
						|  |  | 
					
						
						|  | def change_index_rate(self, new_index_rate): | 
					
						
						|  | if new_index_rate != 0 and self.index_rate == 0: | 
					
						
						|  | self.index = faiss.read_index(self.index_path) | 
					
						
						|  | self.big_npy = self.index.reconstruct_n(0, self.index.ntotal) | 
					
						
						|  | logger.info("Index search enabled") | 
					
						
						|  | self.index_rate = new_index_rate | 
					
						
						|  |  | 
					
						
						|  | def get_f0_post(self, f0): | 
					
						
						|  | f0_min = self.f0_min | 
					
						
						|  | f0_max = self.f0_max | 
					
						
						|  | f0_mel_min = 1127 * np.log(1 + f0_min / 700) | 
					
						
						|  | f0_mel_max = 1127 * np.log(1 + f0_max / 700) | 
					
						
						|  | f0bak = f0.copy() | 
					
						
						|  | f0_mel = 1127 * np.log(1 + f0 / 700) | 
					
						
						|  | f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( | 
					
						
						|  | f0_mel_max - f0_mel_min | 
					
						
						|  | ) + 1 | 
					
						
						|  | f0_mel[f0_mel <= 1] = 1 | 
					
						
						|  | f0_mel[f0_mel > 255] = 255 | 
					
						
						|  | f0_coarse = np.rint(f0_mel).astype(np.int32) | 
					
						
						|  | return f0_coarse, f0bak | 
					
						
						|  |  | 
					
						
						|  | def get_f0(self, x, f0_up_key, n_cpu, method="harvest"): | 
					
						
						|  | n_cpu = int(n_cpu) | 
					
						
						|  | if method == "crepe": | 
					
						
						|  | return self.get_f0_crepe(x, f0_up_key) | 
					
						
						|  | if method == "rmvpe": | 
					
						
						|  | return self.get_f0_rmvpe(x, f0_up_key) | 
					
						
						|  | if method == "pm": | 
					
						
						|  | p_len = x.shape[0] // 160 + 1 | 
					
						
						|  | f0 = ( | 
					
						
						|  | parselmouth.Sound(x, 16000) | 
					
						
						|  | .to_pitch_ac( | 
					
						
						|  | time_step=0.01, | 
					
						
						|  | voicing_threshold=0.6, | 
					
						
						|  | pitch_floor=50, | 
					
						
						|  | pitch_ceiling=1100, | 
					
						
						|  | ) | 
					
						
						|  | .selected_array["frequency"] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pad_size = (p_len - len(f0) + 1) // 2 | 
					
						
						|  | if pad_size > 0 or p_len - len(f0) - pad_size > 0: | 
					
						
						|  |  | 
					
						
						|  | f0 = np.pad( | 
					
						
						|  | f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | f0 *= pow(2, f0_up_key / 12) | 
					
						
						|  | return self.get_f0_post(f0) | 
					
						
						|  | if n_cpu == 1: | 
					
						
						|  | f0, t = pyworld.harvest( | 
					
						
						|  | x.astype(np.double), | 
					
						
						|  | fs=16000, | 
					
						
						|  | f0_ceil=1100, | 
					
						
						|  | f0_floor=50, | 
					
						
						|  | frame_period=10, | 
					
						
						|  | ) | 
					
						
						|  | f0 = signal.medfilt(f0, 3) | 
					
						
						|  | f0 *= pow(2, f0_up_key / 12) | 
					
						
						|  | return self.get_f0_post(f0) | 
					
						
						|  | f0bak = np.zeros(x.shape[0] // 160 + 1, dtype=np.float64) | 
					
						
						|  | length = len(x) | 
					
						
						|  | part_length = 160 * ((length // 160 - 1) // n_cpu + 1) | 
					
						
						|  | n_cpu = (length // 160 - 1) // (part_length // 160) + 1 | 
					
						
						|  | ts = ttime() | 
					
						
						|  | res_f0 = mm.dict() | 
					
						
						|  | for idx in range(n_cpu): | 
					
						
						|  | tail = part_length * (idx + 1) + 320 | 
					
						
						|  | if idx == 0: | 
					
						
						|  | self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts)) | 
					
						
						|  | else: | 
					
						
						|  | self.inp_q.put( | 
					
						
						|  | (idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts) | 
					
						
						|  | ) | 
					
						
						|  | while 1: | 
					
						
						|  | res_ts = self.opt_q.get() | 
					
						
						|  | if res_ts == ts: | 
					
						
						|  | break | 
					
						
						|  | f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])] | 
					
						
						|  | for idx, f0 in enumerate(f0s): | 
					
						
						|  | if idx == 0: | 
					
						
						|  | f0 = f0[:-3] | 
					
						
						|  | elif idx != n_cpu - 1: | 
					
						
						|  | f0 = f0[2:-3] | 
					
						
						|  | else: | 
					
						
						|  | f0 = f0[2:] | 
					
						
						|  | f0bak[ | 
					
						
						|  | part_length * idx // 160 : part_length * idx // 160 + f0.shape[0] | 
					
						
						|  | ] = f0 | 
					
						
						|  | f0bak = signal.medfilt(f0bak, 3) | 
					
						
						|  | f0bak *= pow(2, f0_up_key / 12) | 
					
						
						|  | return self.get_f0_post(f0bak) | 
					
						
						|  |  | 
					
						
						|  | def get_f0_crepe(self, x, f0_up_key): | 
					
						
						|  | if "privateuseone" in str(self.device): | 
					
						
						|  | return self.get_f0(x, f0_up_key, 1, "pm") | 
					
						
						|  | audio = torch.tensor(np.copy(x))[None].float() | 
					
						
						|  |  | 
					
						
						|  | f0, pd = torchcrepe.predict( | 
					
						
						|  | audio, | 
					
						
						|  | self.sr, | 
					
						
						|  | 160, | 
					
						
						|  | self.f0_min, | 
					
						
						|  | self.f0_max, | 
					
						
						|  | "full", | 
					
						
						|  | batch_size=512, | 
					
						
						|  |  | 
					
						
						|  | device=self.device, | 
					
						
						|  | return_periodicity=True, | 
					
						
						|  | ) | 
					
						
						|  | pd = torchcrepe.filter.median(pd, 3) | 
					
						
						|  | f0 = torchcrepe.filter.mean(f0, 3) | 
					
						
						|  | f0[pd < 0.1] = 0 | 
					
						
						|  | f0 = f0[0].cpu().numpy() | 
					
						
						|  | f0 *= pow(2, f0_up_key / 12) | 
					
						
						|  | return self.get_f0_post(f0) | 
					
						
						|  |  | 
					
						
						|  | def get_f0_rmvpe(self, x, f0_up_key): | 
					
						
						|  | if hasattr(self, "model_rmvpe") == False: | 
					
						
						|  | from infer.lib.rmvpe import RMVPE | 
					
						
						|  |  | 
					
						
						|  | logger.info("Loading rmvpe model") | 
					
						
						|  | self.model_rmvpe = RMVPE( | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | "assets/rmvpe/rmvpe.pt", | 
					
						
						|  | is_half=self.is_half, | 
					
						
						|  | device=self.device, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) | 
					
						
						|  | f0 *= pow(2, f0_up_key / 12) | 
					
						
						|  | return self.get_f0_post(f0) | 
					
						
						|  |  | 
					
						
						|  | def infer( | 
					
						
						|  | self, | 
					
						
						|  | feats: torch.Tensor, | 
					
						
						|  | indata: np.ndarray, | 
					
						
						|  | block_frame_16k, | 
					
						
						|  | rate, | 
					
						
						|  | cache_pitch, | 
					
						
						|  | cache_pitchf, | 
					
						
						|  | f0method, | 
					
						
						|  | ) -> np.ndarray: | 
					
						
						|  | feats = feats.view(1, -1) | 
					
						
						|  | if config.is_half: | 
					
						
						|  | feats = feats.half() | 
					
						
						|  | else: | 
					
						
						|  | feats = feats.float() | 
					
						
						|  | feats = feats.to(self.device) | 
					
						
						|  | t1 = ttime() | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) | 
					
						
						|  | inputs = { | 
					
						
						|  | "source": feats, | 
					
						
						|  | "padding_mask": padding_mask, | 
					
						
						|  | "output_layer": 9 if self.version == "v1" else 12, | 
					
						
						|  | } | 
					
						
						|  | logits = self.model.extract_features(**inputs) | 
					
						
						|  | feats = ( | 
					
						
						|  | self.model.final_proj(logits[0]) if self.version == "v1" else logits[0] | 
					
						
						|  | ) | 
					
						
						|  | feats = F.pad(feats, (0, 0, 1, 0)) | 
					
						
						|  | t2 = ttime() | 
					
						
						|  | try: | 
					
						
						|  | if hasattr(self, "index") and self.index_rate != 0: | 
					
						
						|  | leng_replace_head = int(rate * feats[0].shape[0]) | 
					
						
						|  | npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32") | 
					
						
						|  | score, ix = self.index.search(npy, k=8) | 
					
						
						|  | weight = np.square(1 / score) | 
					
						
						|  | weight /= weight.sum(axis=1, keepdims=True) | 
					
						
						|  | npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) | 
					
						
						|  | if config.is_half: | 
					
						
						|  | npy = npy.astype("float16") | 
					
						
						|  | feats[0][-leng_replace_head:] = ( | 
					
						
						|  | torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate | 
					
						
						|  | + (1 - self.index_rate) * feats[0][-leng_replace_head:] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | logger.warn("Index search FAILED or disabled") | 
					
						
						|  | except: | 
					
						
						|  | traceback.print_exc() | 
					
						
						|  | logger.warn("Index search FAILED") | 
					
						
						|  | feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) | 
					
						
						|  | t3 = ttime() | 
					
						
						|  | if self.if_f0 == 1: | 
					
						
						|  | pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method) | 
					
						
						|  | start_frame = block_frame_16k // 160 | 
					
						
						|  | end_frame = len(cache_pitch) - (pitch.shape[0] - 4) + start_frame | 
					
						
						|  | cache_pitch[:] = np.append(cache_pitch[start_frame:end_frame], pitch[3:-1]) | 
					
						
						|  | cache_pitchf[:] = np.append( | 
					
						
						|  | cache_pitchf[start_frame:end_frame], pitchf[3:-1] | 
					
						
						|  | ) | 
					
						
						|  | p_len = min(feats.shape[1], 13000, cache_pitch.shape[0]) | 
					
						
						|  | else: | 
					
						
						|  | cache_pitch, cache_pitchf = None, None | 
					
						
						|  | p_len = min(feats.shape[1], 13000) | 
					
						
						|  | t4 = ttime() | 
					
						
						|  | feats = feats[:, :p_len, :] | 
					
						
						|  | if self.if_f0 == 1: | 
					
						
						|  | cache_pitch = cache_pitch[:p_len] | 
					
						
						|  | cache_pitchf = cache_pitchf[:p_len] | 
					
						
						|  | cache_pitch = torch.LongTensor(cache_pitch).unsqueeze(0).to(self.device) | 
					
						
						|  | cache_pitchf = torch.FloatTensor(cache_pitchf).unsqueeze(0).to(self.device) | 
					
						
						|  | p_len = torch.LongTensor([p_len]).to(self.device) | 
					
						
						|  | ii = 0 | 
					
						
						|  | sid = torch.LongTensor([ii]).to(self.device) | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | if self.if_f0 == 1: | 
					
						
						|  |  | 
					
						
						|  | infered_audio = ( | 
					
						
						|  | self.net_g.infer( | 
					
						
						|  | feats, p_len, cache_pitch, cache_pitchf, sid, rate | 
					
						
						|  | )[0][0, 0] | 
					
						
						|  | .data | 
					
						
						|  | .float() | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | infered_audio = ( | 
					
						
						|  | self.net_g.infer(feats, p_len, sid, rate)[0][0, 0] | 
					
						
						|  | .data | 
					
						
						|  | .float() | 
					
						
						|  | ) | 
					
						
						|  | t5 = ttime() | 
					
						
						|  | logger.info( | 
					
						
						|  | "Spent time: fea = %.2fs, index = %.2fs, f0 = %.2fs, model = %.2fs", | 
					
						
						|  | t2 - t1, | 
					
						
						|  | t3 - t2, | 
					
						
						|  | t4 - t3, | 
					
						
						|  | t5 - t4, | 
					
						
						|  | ) | 
					
						
						|  | return infered_audio |