Lavimelis commited on
Commit
560fb2f
1 Parent(s): 3fd3ed2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +119 -0
app.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import gradio as gr
4
+
5
+ # Farklı filtre fonksiyonları
6
+ def apply_gaussian_blur(frame):
7
+ return cv2.GaussianBlur(frame, (15, 15), 0)
8
+
9
+ def apply_sharpening_filter(frame):
10
+ kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
11
+ return cv2.filter2D(frame, -1, kernel)
12
+
13
+ def apply_edge_detection(frame):
14
+ return cv2.Canny(frame, 100, 200)
15
+
16
+ def apply_invert_filter(frame):
17
+ return cv2.bitwise_not(frame)
18
+
19
+ def adjust_brightness_contrast(frame, alpha=1.0, beta=50):
20
+ return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta)
21
+
22
+ def apply_grayscale_filter(frame):
23
+ return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
24
+
25
+ def apply_sepia_filter(frame):
26
+ sepia_filter = np.array([[0.272, 0.534, 0.131],
27
+ [0.349, 0.686, 0.168],
28
+ [0.393, 0.769, 0.189]])
29
+ return cv2.transform(frame, sepia_filter)
30
+
31
+ def apply_fall_filter(frame):
32
+ fall_filter = np.array([[0.393, 0.769, 0.189],
33
+ [0.349, 0.686, 0.168],
34
+ [0.272, 0.534, 0.131]])
35
+ return cv2.transform(frame, fall_filter)
36
+
37
+ def apply_emboss_filter(frame):
38
+ kernel = np.array([[ -2, -1, 0],
39
+ [ -1, 1, 1],
40
+ [ 0, 1, 2]])
41
+ return cv2.filter2D(frame, -1, kernel)
42
+
43
+ def apply_cartoon_filter(frame):
44
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
45
+ gray = cv2.medianBlur(gray, 5)
46
+ edges = cv2.adaptiveThreshold(gray, 255,
47
+ cv2.ADAPTIVE_THRESH_MEAN_C,
48
+ cv2.THRESH_BINARY, 9, 9)
49
+ color = cv2.bilateralFilter(frame, 9, 300, 300)
50
+ return cv2.bitwise_and(color, color, mask=edges)
51
+
52
+ def apply_threshold(frame, thresh_value=127):
53
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
54
+ _, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
55
+ return thresh
56
+
57
+ def apply_blurred_edges(frame):
58
+ blurred = cv2.GaussianBlur(frame, (21, 21), 0)
59
+ edges = cv2.Canny(frame, 100, 200)
60
+ return cv2.bitwise_and(blurred, blurred, mask=edges)
61
+
62
+ # Filtre uygulama fonksiyonu
63
+ def apply_filter(filter_type, input_image):
64
+ if input_image is None:
65
+ return "Resim yüklenmedi"
66
+
67
+ frame = input_image
68
+
69
+ if filter_type == "Gaussian Blur":
70
+ return apply_gaussian_blur(frame)
71
+ elif filter_type == "Sharpen":
72
+ return apply_sharpening_filter(frame)
73
+ elif filter_type == "Edge Detection":
74
+ return apply_edge_detection(frame)
75
+ elif filter_type == "Invert":
76
+ return apply_invert_filter(frame)
77
+ elif filter_type == "Brightness":
78
+ return adjust_brightness_contrast(frame, alpha=1.0, beta=50)
79
+ elif filter_type == "Grayscale":
80
+ return apply_grayscale_filter(frame)
81
+ elif filter_type == "Sepia":
82
+ return apply_sepia_filter(frame)
83
+ elif filter_type == "Sonbahar":
84
+ return apply_fall_filter(frame)
85
+ elif filter_type == "Emboss":
86
+ return apply_emboss_filter(frame)
87
+ elif filter_type == "Cartoon":
88
+ return apply_cartoon_filter(frame)
89
+ elif filter_type == "Threshold":
90
+ return apply_threshold(frame)
91
+ elif filter_type == "Blurred Edges":
92
+ return apply_blurred_edges(frame)
93
+
94
+ # Gradio arayüzü
95
+ with gr.Blocks() as demo:
96
+ gr.Markdown("# Web Kameradan Canlı Filtreleme")
97
+
98
+ # Filtre seçenekleri
99
+ filter_type = gr.Dropdown(
100
+ label="Filtre Seçin",
101
+ choices=["Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness",
102
+ "Grayscale", "Sepia", "Sonbahar", "Emboss", "Cartoon", "Threshold", "Blurred Edges"],
103
+ value="Gaussian Blur"
104
+ )
105
+
106
+ # Görüntü yükleme alanı
107
+ input_image = gr.Image(label="Resim Yükle", type="numpy")
108
+
109
+ # Çıktı için görüntü
110
+ output_image = gr.Image(label="Filtre Uygulandı")
111
+
112
+ # Filtre uygula butonu
113
+ apply_button = gr.Button("Filtreyi Uygula")
114
+
115
+ # Butona tıklanınca filtre uygulama fonksiyonu
116
+ apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
117
+
118
+ # Gradio arayüzünü başlat
119
+ demo.launch()