Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoTokenizer | |
import torch.nn as nn | |
from bert_classification import CustomBert # Importer le modèle depuis le fichier bert_classification.py | |
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') | |
def load_model(model_path, num_classes): | |
model = CustomBert(n_classes=num_classes) # Adapter ici le nombre de classes | |
model.load_state_dict(torch.load(model_path)) | |
model.eval() | |
return model | |
def predict_category(headline, article, model, labels_dict, max_length=100): | |
text = headline + " " + article | |
inputs = tokenizer( | |
text, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt" | |
) | |
with torch.no_grad(): | |
output = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) | |
probabilities = nn.Softmax(dim=1)(output) | |
_, pred = torch.max(probabilities, dim=1) | |
score = probabilities[0][pred].item() | |
inv_labels_dict = {v: k for k, v in labels_dict.items()} | |
category = inv_labels_dict[pred.item()] | |
score = round(score, 2) | |
return category, score | |