|
import torch |
|
import torch.nn as nn |
|
from torch.nn import init |
|
import functools |
|
from torch.optim import lr_scheduler |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Identity(nn.Module): |
|
def forward(self, x): |
|
return x |
|
|
|
|
|
def get_norm_layer(norm_type='instance'): |
|
"""Return a normalization layer |
|
Parameters: |
|
norm_type (str) -- the name of the normalization layer: batch | instance | none |
|
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). |
|
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. |
|
""" |
|
if norm_type == 'batch': |
|
norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) |
|
elif norm_type == 'instance': |
|
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) |
|
elif norm_type == 'none': |
|
def norm_layer(x): |
|
return Identity() |
|
else: |
|
raise NotImplementedError('normalization layer [%s] is not found' % norm_type) |
|
return norm_layer |
|
|
|
|
|
def get_scheduler(optimizer, opt): |
|
"""Return a learning rate scheduler |
|
Parameters: |
|
optimizer -- the optimizer of the network |
|
opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions. |
|
opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine |
|
For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs |
|
and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs. |
|
For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. |
|
See https://pytorch.org/docs/stable/optim.html for more details. |
|
""" |
|
if opt.lr_policy == 'linear': |
|
def lambda_rule(epoch): |
|
lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1) |
|
return lr_l |
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) |
|
elif opt.lr_policy == 'step': |
|
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) |
|
elif opt.lr_policy == 'plateau': |
|
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) |
|
elif opt.lr_policy == 'cosine': |
|
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) |
|
else: |
|
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) |
|
return scheduler |
|
|
|
|
|
def init_weights(net, init_type='normal', init_gain=0.02): |
|
"""Initialize network weights. |
|
Parameters: |
|
net (network) -- network to be initialized |
|
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal |
|
init_gain (float) -- scaling factor for normal, xavier and orthogonal. |
|
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might |
|
work better for some applications. Feel free to try yourself. |
|
""" |
|
def init_func(m): |
|
classname = m.__class__.__name__ |
|
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): |
|
if init_type == 'normal': |
|
init.normal_(m.weight.data, 0.0, init_gain) |
|
elif init_type == 'xavier': |
|
init.xavier_normal_(m.weight.data, gain=init_gain) |
|
elif init_type == 'kaiming': |
|
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') |
|
elif init_type == 'orthogonal': |
|
init.orthogonal_(m.weight.data, gain=init_gain) |
|
else: |
|
raise NotImplementedError('initialization method [%s] is not implemented' % init_type) |
|
if hasattr(m, 'bias') and m.bias is not None: |
|
init.constant_(m.bias.data, 0.0) |
|
elif classname.find('BatchNorm2d') != -1: |
|
init.normal_(m.weight.data, 1.0, init_gain) |
|
init.constant_(m.bias.data, 0.0) |
|
|
|
print('initialize network with %s' % init_type) |
|
net.apply(init_func) |
|
|
|
|
|
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): |
|
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights |
|
Parameters: |
|
net (network) -- the network to be initialized |
|
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal |
|
gain (float) -- scaling factor for normal, xavier and orthogonal. |
|
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 |
|
Return an initialized network. |
|
""" |
|
if len(gpu_ids) > 0: |
|
assert(torch.cuda.is_available()) |
|
net.to(gpu_ids[0]) |
|
net = torch.nn.DataParallel(net, gpu_ids) |
|
init_weights(net, init_type, init_gain=init_gain) |
|
return net |
|
|
|
|
|
def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]): |
|
"""Create a generator |
|
Parameters: |
|
input_nc (int) -- the number of channels in input images |
|
output_nc (int) -- the number of channels in output images |
|
ngf (int) -- the number of filters in the last conv layer |
|
netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128 |
|
norm (str) -- the name of normalization layers used in the network: batch | instance | none |
|
use_dropout (bool) -- if use dropout layers. |
|
init_type (str) -- the name of our initialization method. |
|
init_gain (float) -- scaling factor for normal, xavier and orthogonal. |
|
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 |
|
Returns a generator |
|
Our current implementation provides two types of generators: |
|
U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images) |
|
The original U-Net paper: https://arxiv.org/abs/1505.04597 |
|
Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks) |
|
Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations. |
|
We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style). |
|
The generator has been initialized by <init_net>. It uses RELU for non-linearity. |
|
""" |
|
net = None |
|
norm_layer = get_norm_layer(norm_type=norm) |
|
|
|
if netG == 'resnet_9blocks': |
|
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) |
|
elif netG == 'resnet_6blocks': |
|
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) |
|
elif netG == 'unet_128': |
|
net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout) |
|
elif netG == 'unet_256': |
|
net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout) |
|
else: |
|
raise NotImplementedError('Generator model name [%s] is not recognized' % netG) |
|
return init_net(net, init_type, init_gain, gpu_ids) |
|
|
|
|
|
|
|
|
|
|
|
class ResnetGenerator(nn.Module): |
|
"""Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. |
|
We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) |
|
""" |
|
|
|
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): |
|
"""Construct a Resnet-based generator |
|
Parameters: |
|
input_nc (int) -- the number of channels in input images |
|
output_nc (int) -- the number of channels in output images |
|
ngf (int) -- the number of filters in the last conv layer |
|
norm_layer -- normalization layer |
|
use_dropout (bool) -- if use dropout layers |
|
n_blocks (int) -- the number of ResNet blocks |
|
padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero |
|
""" |
|
assert(n_blocks >= 0) |
|
super(ResnetGenerator, self).__init__() |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
model = [nn.ReflectionPad2d(3), |
|
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), |
|
norm_layer(ngf), |
|
nn.ReLU(True)] |
|
|
|
n_downsampling = 2 |
|
for i in range(n_downsampling): |
|
mult = 2 ** i |
|
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), |
|
norm_layer(ngf * mult * 2), |
|
nn.ReLU(True)] |
|
|
|
mult = 2 ** n_downsampling |
|
for i in range(n_blocks): |
|
|
|
model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] |
|
|
|
for i in range(n_downsampling): |
|
mult = 2 ** (n_downsampling - i) |
|
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), |
|
kernel_size=3, stride=2, |
|
padding=1, output_padding=1, |
|
bias=use_bias), |
|
norm_layer(int(ngf * mult / 2)), |
|
nn.ReLU(True)] |
|
model += [nn.ReflectionPad2d(3)] |
|
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] |
|
model += [nn.Tanh()] |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, input): |
|
"""Standard forward""" |
|
return self.model(input) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
"""Define a Resnet block""" |
|
|
|
def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): |
|
"""Initialize the Resnet block |
|
A resnet block is a conv block with skip connections |
|
We construct a conv block with build_conv_block function, |
|
and implement skip connections in <forward> function. |
|
Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf |
|
""" |
|
super(ResnetBlock, self).__init__() |
|
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) |
|
|
|
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): |
|
"""Construct a convolutional block. |
|
Parameters: |
|
dim (int) -- the number of channels in the conv layer. |
|
padding_type (str) -- the name of padding layer: reflect | replicate | zero |
|
norm_layer -- normalization layer |
|
use_dropout (bool) -- if use dropout layers. |
|
use_bias (bool) -- if the conv layer uses bias or not |
|
Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) |
|
""" |
|
conv_block = [] |
|
p = 0 |
|
if padding_type == 'reflect': |
|
conv_block += [nn.ReflectionPad2d(1)] |
|
elif padding_type == 'replicate': |
|
conv_block += [nn.ReplicationPad2d(1)] |
|
elif padding_type == 'zero': |
|
p = 1 |
|
else: |
|
raise NotImplementedError('padding [%s] is not implemented' % padding_type) |
|
|
|
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] |
|
if use_dropout: |
|
conv_block += [nn.Dropout(0.5)] |
|
|
|
p = 0 |
|
if padding_type == 'reflect': |
|
conv_block += [nn.ReflectionPad2d(1)] |
|
elif padding_type == 'replicate': |
|
conv_block += [nn.ReplicationPad2d(1)] |
|
elif padding_type == 'zero': |
|
p = 1 |
|
else: |
|
raise NotImplementedError('padding [%s] is not implemented' % padding_type) |
|
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] |
|
|
|
return nn.Sequential(*conv_block) |
|
|
|
def forward(self, x): |
|
"""Forward function (with skip connections)""" |
|
out = x + self.conv_block(x) |
|
return out |
|
|
|
|
|
class UnetGenerator(nn.Module): |
|
"""Create a Unet-based generator""" |
|
|
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
"""Construct a Unet generator |
|
Parameters: |
|
input_nc (int) -- the number of channels in input images |
|
output_nc (int) -- the number of channels in output images |
|
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, |
|
image of size 128x128 will become of size 1x1 # at the bottleneck |
|
ngf (int) -- the number of filters in the last conv layer |
|
norm_layer -- normalization layer |
|
We construct the U-Net from the innermost layer to the outermost layer. |
|
It is a recursive process. |
|
""" |
|
super(UnetGenerator, self).__init__() |
|
|
|
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) |
|
for i in range(num_downs - 5): |
|
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) |
|
|
|
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) |
|
|
|
def forward(self, input): |
|
"""Standard forward""" |
|
return self.model(input) |
|
|
|
|
|
class UnetSkipConnectionBlock(nn.Module): |
|
"""Defines the Unet submodule with skip connection. |
|
X -------------------identity---------------------- |
|
|-- downsampling -- |submodule| -- upsampling --| |
|
""" |
|
|
|
def __init__(self, outer_nc, inner_nc, input_nc=None, |
|
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
"""Construct a Unet submodule with skip connections. |
|
Parameters: |
|
outer_nc (int) -- the number of filters in the outer conv layer |
|
inner_nc (int) -- the number of filters in the inner conv layer |
|
input_nc (int) -- the number of channels in input images/features |
|
submodule (UnetSkipConnectionBlock) -- previously defined submodules |
|
outermost (bool) -- if this module is the outermost module |
|
innermost (bool) -- if this module is the innermost module |
|
norm_layer -- normalization layer |
|
use_dropout (bool) -- if use dropout layers. |
|
""" |
|
super(UnetSkipConnectionBlock, self).__init__() |
|
self.outermost = outermost |
|
if type(norm_layer) == functools.partial: |
|
use_bias = norm_layer.func == nn.InstanceNorm2d |
|
else: |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
if input_nc is None: |
|
input_nc = outer_nc |
|
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, |
|
stride=2, padding=1, bias=use_bias) |
|
downrelu = nn.LeakyReLU(0.2, True) |
|
downnorm = norm_layer(inner_nc) |
|
uprelu = nn.ReLU(True) |
|
upnorm = norm_layer(outer_nc) |
|
|
|
if outermost: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1) |
|
down = [downconv] |
|
up = [uprelu, upconv, nn.Tanh()] |
|
model = down + [submodule] + up |
|
elif innermost: |
|
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv] |
|
up = [uprelu, upconv, upnorm] |
|
model = down + up |
|
else: |
|
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, |
|
kernel_size=4, stride=2, |
|
padding=1, bias=use_bias) |
|
down = [downrelu, downconv, downnorm] |
|
up = [uprelu, upconv, upnorm] |
|
|
|
if use_dropout: |
|
model = down + [submodule] + up + [nn.Dropout(0.5)] |
|
else: |
|
model = down + [submodule] + up |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, x): |
|
if self.outermost: |
|
return self.model(x) |
|
else: |
|
return torch.cat([x, self.model(x)], 1) |