LuisZermeno's picture
Create app.py
bd0da6c verified
from typing import Any
import os
from PIL import Image
import io
import base64
import requests
import time
#Gradio for the hackaton:
import gradio as gr
# we used uv add mcp[cli] httpx to get these:
import httpx
from mcp.server.fastmcp import FastMCP
# Initialize FastMCP server
mcp = FastMCP("linkedin-image-processor")
# Constants
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
#let's add our helper functions:
async def flux_kontext_edit_image(image: Image.Image, prompt: str) -> Image.Image:
"""Use Flux Kontext API to edit an image based on a prompt
Args:
image: PIL Image to edit
prompt: Text description of what to edit
Returns:
Image.Image: Edited image from Flux Kontext
"""
try:
# Encode image to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Make request to Flux Kontext API
response = requests.post(
'https://api.bfl.ai/v1/flux-kontext-pro',
headers={
'accept': 'application/json',
'x-key': os.environ.get("BFL_API_KEY"),
'Content-Type': 'application/json',
},
json={
'prompt': prompt,
'input_image': img_str,
},
)
if response.status_code != 200:
print(f"API request failed: {response.status_code}")
return image
request_data = response.json()
request_id = request_data.get("id")
if not request_id:
print("No request ID received")
return image
# Poll for result (simplified polling)
max_attempts = 30
for attempt in range(max_attempts):
time.sleep(2)
result_response = requests.get(
f'https://api.bfl.ai/v1/get_result?id={request_id}',
headers={
'accept': 'application/json',
'x-key': os.environ.get("BFL_API_KEY"),
}
)
if result_response.status_code == 200:
result_data = result_response.json()
if result_data.get("status") == "Ready":
image_url = result_data.get("result", {}).get("sample")
if image_url:
# Download and return the edited image
img_response = requests.get(image_url)
edited_image = Image.open(io.BytesIO(img_response.content))
return edited_image
elif result_data.get("status") == "Error":
print(f"Flux Kontext error: {result_data.get('result')}")
break
print("Flux Kontext processing timeout or failed")
return image
except Exception as e:
print(f"Error with Flux Kontext API: {e}")
return image
def process_linkedin_image(image) -> Image.Image:
"""Process an image for LinkedIn optimization using Flux Kontext
Args:
image: Input image file
Returns:
Image.Image: Processed image optimized for LinkedIn
"""
if image is None:
return None
try:
# Handle different input types
if isinstance(image, str):
img = Image.open(image)
else:
img = image
# Define the fixed professional prompt
professional_prompt = "Make the person wear a light blue blazer, make the background white and clean any noise in the foreground. make the hair more orderly. Keep the face of the person intact. keep the gender of the person intact. the image should always be a bust"
# First, use Flux Kontext to enhance/edit the image
import asyncio
edited_img = asyncio.run(flux_kontext_edit_image(img, professional_prompt))
# Then apply LinkedIn optimization
target_width = 800
target_height = 800
# Calculate aspect ratio
original_width, original_height = edited_img.size
original_ratio = original_width / original_height
target_ratio = target_width / target_height
# Resize while maintaining aspect ratio
if original_ratio > target_ratio:
new_width = target_width
new_height = int(target_width / original_ratio)
else:
new_height = target_height
new_width = int(target_height * original_ratio)
# Resize the image
img_resized = edited_img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create a new image with LinkedIn dimensions and white background
linkedin_img = Image.new('RGB', (target_width, target_height), 'white')
# Calculate position to center the resized image
x = (target_width - new_width) // 2
y = (target_height - new_height) // 2
# Paste the resized image onto the LinkedIn-sized canvas
linkedin_img.paste(img_resized, (x, y))
return linkedin_img
except Exception as e:
print(f"Error processing image: {e}")
return image if image else None
@mcp.tool()
async def create_professional_linkedin_headshot(image_url: str) -> str:
"""Transform any photo into a professional LinkedIn headshot using AI.
Automatically adds professional business attire (light blue blazer), creates a clean white
background, tidies hair, removes noise, and formats as an 800x800 centered bust shot while
preserving facial features and gender. Perfect for professional headshots, profile pictures,
business photos, and LinkedIn optimization.
Args:
image_url: HTTP/HTTPS URL to the input image file (JPEG, PNG supported)
Returns:
str: Success message or error description
"""
try:
processed_img = process_linkedin_image(image_url)
if processed_img:
return "Professional LinkedIn headshot created successfully - added business attire, clean background, and professional formatting"
else:
return "Failed to process image for LinkedIn optimization"
except Exception as e:
return f"Error creating professional headshot: {str(e)}"
@mcp.resource("config://linkedin-optimizer")
async def linkedin_optimizer_resource():
"""LinkedIn image optimization resource
Provides optimal dimensions and processing for LinkedIn posts
"""
return {
"name": "LinkedIn Image Optimizer",
"description": "Optimizes images for LinkedIn posts",
"recommended_dimensions": "800x800 pixels",
"supported_formats": ["JPEG", "PNG", "GIF"],
"max_file_size": "5MB"
}
demo = gr.Interface(
fn=process_linkedin_image,
inputs=gr.Image(type="pil", label="Upload Your Photo"),
outputs=gr.Image(type="pil", label="Professional LinkedIn Photo"),
title="Professional LinkedIn Photo Generator",
description="Upload a photo and automatically transform it into a professional LinkedIn profile picture."
)
if __name__ == "__main__":
# Initialize and run the server
demo.launch(mcp_server=True)