Spaces:
Runtime error
Runtime error
import argparse | |
import torch | |
from llava.constants import X_TOKEN_INDEX, DEFAULT_X_TOKEN, DEFAULT_X_START_TOKEN, DEFAULT_X_END_TOKEN | |
from llava.conversation import conv_templates, SeparatorStyle | |
from llava.model.builder import load_pretrained_model | |
from llava.utils import disable_torch_init | |
from llava.mm_utils import process_images, tokenizer_X_token, get_model_name_from_path, KeywordsStoppingCriteria | |
from PIL import Image | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
from transformers import TextStreamer | |
def load_image(image_file): | |
if image_file.startswith('http://') or image_file.startswith('https://'): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert('RGB') | |
else: | |
image = Image.open(image_file).convert('RGB') | |
return image | |
def main(args): | |
# Model | |
disable_torch_init() | |
assert not (args.image_file and args.video_file) | |
model_name = get_model_name_from_path(args.model_path) | |
tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, | |
args.load_8bit, args.load_4bit, device=args.device) | |
# print(model, tokenizer, processor) | |
image_processor = processor['image'] | |
video_processor = processor['video'] | |
if 'llama-2' in model_name.lower(): | |
conv_mode = "llava_llama_2" | |
elif "v1" in model_name.lower(): | |
conv_mode = "llava_v1" | |
elif "mpt" in model_name.lower(): | |
conv_mode = "mpt" | |
else: | |
conv_mode = "llava_v0" | |
if args.conv_mode is not None and conv_mode != args.conv_mode: | |
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) | |
else: | |
args.conv_mode = conv_mode | |
conv = conv_templates[args.conv_mode].copy() | |
if "mpt" in model_name.lower(): | |
roles = ('user', 'assistant') | |
else: | |
roles = conv.roles | |
image = args.image_file | |
video = args.video_file | |
# print(image, video) | |
if args.image_file: | |
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'] | |
if type(image_tensor) is list: | |
tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] | |
else: | |
tensor = image_tensor.to(model.device, dtype=torch.float16) | |
key = ['image'] | |
# print(tensor.shape) | |
elif args.video_file: | |
video_tensor = video_processor(video, return_tensors='pt')['pixel_values'] | |
if type(video_tensor) is list: | |
tensor = [video.to(model.device, dtype=torch.float16) for video in video_tensor] | |
else: | |
tensor = video_tensor.to(model.device, dtype=torch.float16) | |
key = ['video'] | |
# print(tensor.shape) | |
while True: | |
try: | |
inp = input(f"{roles[0]}: ") | |
except EOFError: | |
inp = "" | |
if not inp: | |
print("exit...") | |
break | |
print(f"{roles[1]}: ", end="") | |
if image is not None: | |
# first message | |
inp = DEFAULT_X_TOKEN['IMAGE'] + '\n' + inp | |
conv.append_message(conv.roles[0], inp) | |
image = None | |
elif video is not None: | |
# first message | |
inp = DEFAULT_X_TOKEN['VIDEO'] + '\n' + inp | |
conv.append_message(conv.roles[0], inp) | |
video = None | |
else: | |
# later messages | |
conv.append_message(conv.roles[0], inp) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
if args.image_file: | |
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt').unsqueeze(0).cuda() | |
elif args.video_file: | |
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).cuda() | |
# print(input_ids.shape) | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=[tensor, key], | |
do_sample=True, | |
temperature=args.temperature, | |
max_new_tokens=args.max_new_tokens, | |
streamer=streamer, | |
use_cache=True, | |
stopping_criteria=[stopping_criteria]) | |
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() | |
conv.messages[-1][-1] = outputs | |
if args.debug: | |
print("\n", {"prompt": prompt, "outputs": outputs}, "\n") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
parser.add_argument("--model-base", type=str, default=None) | |
parser.add_argument("--image-file", type=str, default=None) | |
parser.add_argument("--video-file", type=str) | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--conv-mode", type=str, default=None) | |
parser.add_argument("--temperature", type=float, default=0.2) | |
parser.add_argument("--max-new-tokens", type=int, default=512) | |
parser.add_argument("--load-8bit", action="store_true") | |
parser.add_argument("--load-4bit", action="store_true") | |
parser.add_argument("--debug", action="store_true") | |
parser.add_argument("--image-aspect-ratio", type=str, default='pad') | |
args = parser.parse_args() | |
main(args) | |