Open-Sora-Plan-v1.1.0 / examples /rec_video_vae.py
LinB203
update
bab971b
raw
history blame
9.46 kB
import random
import argparse
import cv2
from tqdm import tqdm
import numpy as np
import numpy.typing as npt
import torch
from decord import VideoReader, cpu
from torch.nn import functional as F
from pytorchvideo.transforms import ShortSideScale
from torchvision.transforms import Lambda, Compose
from torchvision.transforms._transforms_video import CenterCropVideo
import sys
from torch.utils.data import Dataset, DataLoader, Subset
import os
sys.path.append(".")
from opensora.models.ae.videobase import CausalVAEModel
import torch.nn as nn
def array_to_video(
image_array: npt.NDArray, fps: float = 30.0, output_file: str = "output_video.mp4"
) -> None:
height, width, channels = image_array[0].shape
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
video_writer = cv2.VideoWriter(output_file, fourcc, float(fps), (width, height))
for image in image_array:
image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
video_writer.write(image_rgb)
video_writer.release()
def custom_to_video(
x: torch.Tensor, fps: float = 2.0, output_file: str = "output_video.mp4"
) -> None:
x = x.detach().cpu()
x = torch.clamp(x, -1, 1)
x = (x + 1) / 2
x = x.permute(1, 2, 3, 0).float().numpy()
x = (255 * x).astype(np.uint8)
array_to_video(x, fps=fps, output_file=output_file)
return
def read_video(video_path: str, num_frames: int, sample_rate: int) -> torch.Tensor:
decord_vr = VideoReader(video_path, ctx=cpu(0), num_threads=8)
total_frames = len(decord_vr)
sample_frames_len = sample_rate * num_frames
if total_frames > sample_frames_len:
s = 0
e = s + sample_frames_len
num_frames = num_frames
else:
s = 0
e = total_frames
num_frames = int(total_frames / sample_frames_len * num_frames)
print(
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}",
video_path,
total_frames,
)
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
video_data = torch.from_numpy(video_data)
video_data = video_data.permute(3, 0, 1, 2) # (T, H, W, C) -> (C, T, H, W)
return video_data
class RealVideoDataset(Dataset):
def __init__(
self,
real_video_dir,
num_frames,
sample_rate=1,
crop_size=None,
resolution=128,
) -> None:
super().__init__()
self.real_video_files = self._combine_without_prefix(real_video_dir)
self.num_frames = num_frames
self.sample_rate = sample_rate
self.crop_size = crop_size
self.short_size = resolution
def __len__(self):
return len(self.real_video_files)
def __getitem__(self, index):
if index >= len(self):
raise IndexError
real_video_file = self.real_video_files[index]
real_video_tensor = self._load_video(real_video_file)
video_name = os.path.basename(real_video_file)
return {'video': real_video_tensor, 'file_name': video_name }
def _load_video(self, video_path):
num_frames = self.num_frames
sample_rate = self.sample_rate
decord_vr = VideoReader(video_path, ctx=cpu(0))
total_frames = len(decord_vr)
sample_frames_len = sample_rate * num_frames
if total_frames > sample_frames_len:
s = 0
e = s + sample_frames_len
num_frames = num_frames
else:
s = 0
e = total_frames
num_frames = int(total_frames / sample_frames_len * num_frames)
print(
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}",
video_path,
total_frames,
)
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int)
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
video_data = torch.from_numpy(video_data)
video_data = video_data.permute(3, 0, 1, 2)
return _preprocess(
video_data, short_size=self.short_size, crop_size=self.crop_size
)
def _combine_without_prefix(self, folder_path, prefix="."):
folder = []
for name in os.listdir(folder_path):
if name[0] == prefix:
continue
folder.append(os.path.join(folder_path, name))
folder.sort()
return folder
def resize(x, resolution):
height, width = x.shape[-2:]
aspect_ratio = width / height
if width <= height:
new_width = resolution
new_height = int(resolution / aspect_ratio)
else:
new_height = resolution
new_width = int(resolution * aspect_ratio)
resized_x = F.interpolate(x, size=(new_height, new_width), mode='bilinear', align_corners=True, antialias=True)
return resized_x
def _preprocess(video_data, short_size=128, crop_size=None):
transform = Compose(
[
Lambda(lambda x: ((x / 255.0) * 2 - 1)),
Lambda(lambda x: resize(x, short_size)),
(
CenterCropVideo(crop_size=crop_size)
if crop_size is not None
else Lambda(lambda x: x)
),
]
)
video_outputs = transform(video_data)
video_outputs = _format_video_shape(video_outputs)
return video_outputs
def _format_video_shape(video, time_compress=4, spatial_compress=8):
time = video.shape[1]
height = video.shape[2]
width = video.shape[3]
new_time = (
(time - (time - 1) % time_compress)
if (time - 1) % time_compress != 0
else time
)
new_height = (
(height - (height) % spatial_compress)
if height % spatial_compress != 0
else height
)
new_width = (
(width - (width) % spatial_compress) if width % spatial_compress != 0 else width
)
return video[:, :new_time, :new_height, :new_width]
@torch.no_grad()
def main(args: argparse.Namespace):
real_video_dir = args.real_video_dir
generated_video_dir = args.generated_video_dir
ckpt = args.ckpt
sample_rate = args.sample_rate
resolution = args.resolution
crop_size = args.crop_size
num_frames = args.num_frames
sample_rate = args.sample_rate
device = args.device
sample_fps = args.sample_fps
batch_size = args.batch_size
num_workers = args.num_workers
subset_size = args.subset_size
if not os.path.exists(args.generated_video_dir):
os.makedirs(args.generated_video_dir, exist_ok=True)
data_type = torch.bfloat16
# ---- Load Model ----
device = args.device
vqvae = CausalVAEModel.from_pretrained(args.ckpt)
vqvae = vqvae.to(device).to(data_type)
if args.enable_tiling:
vqvae.enable_tiling()
vqvae.tile_overlap_factor = args.tile_overlap_factor
# ---- Load Model ----
# ---- Prepare Dataset ----
dataset = RealVideoDataset(
real_video_dir=real_video_dir,
num_frames=num_frames,
sample_rate=sample_rate,
crop_size=crop_size,
resolution=resolution,
)
if subset_size:
indices = range(subset_size)
dataset = Subset(dataset, indices=indices)
dataloader = DataLoader(
dataset, batch_size=batch_size, pin_memory=True, num_workers=num_workers
)
# ---- Prepare Dataset
# ---- Inference ----
for batch in tqdm(dataloader):
x, file_names = batch['video'], batch['file_name']
x = x.to(device=device, dtype=data_type) # b c t h w
latents = vqvae.encode(x).sample().to(data_type)
video_recon = vqvae.decode(latents)
for idx, video in enumerate(video_recon):
output_path = os.path.join(generated_video_dir, file_names[idx])
if args.output_origin:
os.makedirs(os.path.join(generated_video_dir, "origin/"), exist_ok=True)
origin_output_path = os.path.join(generated_video_dir, "origin/", file_names[idx])
custom_to_video(
x[idx], fps=sample_fps / sample_rate, output_file=origin_output_path
)
custom_to_video(
video, fps=sample_fps / sample_rate, output_file=output_path
)
# ---- Inference ----
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--real_video_dir", type=str, default="")
parser.add_argument("--generated_video_dir", type=str, default="")
parser.add_argument("--ckpt", type=str, default="")
parser.add_argument("--sample_fps", type=int, default=30)
parser.add_argument("--resolution", type=int, default=336)
parser.add_argument("--crop_size", type=int, default=None)
parser.add_argument("--num_frames", type=int, default=17)
parser.add_argument("--sample_rate", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--subset_size", type=int, default=None)
parser.add_argument("--tile_overlap_factor", type=float, default=0.25)
parser.add_argument('--enable_tiling', action='store_true')
parser.add_argument('--output_origin', action='store_true')
parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()
main(args)