Spaces:
Runtime error
Runtime error
import random | |
import argparse | |
import cv2 | |
from tqdm import tqdm | |
import numpy as np | |
import numpy.typing as npt | |
import torch | |
from decord import VideoReader, cpu | |
from torch.nn import functional as F | |
from pytorchvideo.transforms import ShortSideScale | |
from torchvision.transforms import Lambda, Compose | |
from torchvision.transforms._transforms_video import CenterCropVideo | |
import sys | |
from torch.utils.data import Dataset, DataLoader, Subset | |
import os | |
sys.path.append(".") | |
from opensora.models.ae.videobase import CausalVAEModel | |
import torch.nn as nn | |
def array_to_video( | |
image_array: npt.NDArray, fps: float = 30.0, output_file: str = "output_video.mp4" | |
) -> None: | |
height, width, channels = image_array[0].shape | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
video_writer = cv2.VideoWriter(output_file, fourcc, float(fps), (width, height)) | |
for image in image_array: | |
image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
video_writer.write(image_rgb) | |
video_writer.release() | |
def custom_to_video( | |
x: torch.Tensor, fps: float = 2.0, output_file: str = "output_video.mp4" | |
) -> None: | |
x = x.detach().cpu() | |
x = torch.clamp(x, -1, 1) | |
x = (x + 1) / 2 | |
x = x.permute(1, 2, 3, 0).float().numpy() | |
x = (255 * x).astype(np.uint8) | |
array_to_video(x, fps=fps, output_file=output_file) | |
return | |
def read_video(video_path: str, num_frames: int, sample_rate: int) -> torch.Tensor: | |
decord_vr = VideoReader(video_path, ctx=cpu(0), num_threads=8) | |
total_frames = len(decord_vr) | |
sample_frames_len = sample_rate * num_frames | |
if total_frames > sample_frames_len: | |
s = 0 | |
e = s + sample_frames_len | |
num_frames = num_frames | |
else: | |
s = 0 | |
e = total_frames | |
num_frames = int(total_frames / sample_frames_len * num_frames) | |
print( | |
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}", | |
video_path, | |
total_frames, | |
) | |
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int) | |
video_data = decord_vr.get_batch(frame_id_list).asnumpy() | |
video_data = torch.from_numpy(video_data) | |
video_data = video_data.permute(3, 0, 1, 2) # (T, H, W, C) -> (C, T, H, W) | |
return video_data | |
class RealVideoDataset(Dataset): | |
def __init__( | |
self, | |
real_video_dir, | |
num_frames, | |
sample_rate=1, | |
crop_size=None, | |
resolution=128, | |
) -> None: | |
super().__init__() | |
self.real_video_files = self._combine_without_prefix(real_video_dir) | |
self.num_frames = num_frames | |
self.sample_rate = sample_rate | |
self.crop_size = crop_size | |
self.short_size = resolution | |
def __len__(self): | |
return len(self.real_video_files) | |
def __getitem__(self, index): | |
if index >= len(self): | |
raise IndexError | |
real_video_file = self.real_video_files[index] | |
real_video_tensor = self._load_video(real_video_file) | |
video_name = os.path.basename(real_video_file) | |
return {'video': real_video_tensor, 'file_name': video_name } | |
def _load_video(self, video_path): | |
num_frames = self.num_frames | |
sample_rate = self.sample_rate | |
decord_vr = VideoReader(video_path, ctx=cpu(0)) | |
total_frames = len(decord_vr) | |
sample_frames_len = sample_rate * num_frames | |
if total_frames > sample_frames_len: | |
s = 0 | |
e = s + sample_frames_len | |
num_frames = num_frames | |
else: | |
s = 0 | |
e = total_frames | |
num_frames = int(total_frames / sample_frames_len * num_frames) | |
print( | |
f"sample_frames_len {sample_frames_len}, only can sample {num_frames * sample_rate}", | |
video_path, | |
total_frames, | |
) | |
frame_id_list = np.linspace(s, e - 1, num_frames, dtype=int) | |
video_data = decord_vr.get_batch(frame_id_list).asnumpy() | |
video_data = torch.from_numpy(video_data) | |
video_data = video_data.permute(3, 0, 1, 2) | |
return _preprocess( | |
video_data, short_size=self.short_size, crop_size=self.crop_size | |
) | |
def _combine_without_prefix(self, folder_path, prefix="."): | |
folder = [] | |
for name in os.listdir(folder_path): | |
if name[0] == prefix: | |
continue | |
folder.append(os.path.join(folder_path, name)) | |
folder.sort() | |
return folder | |
def resize(x, resolution): | |
height, width = x.shape[-2:] | |
aspect_ratio = width / height | |
if width <= height: | |
new_width = resolution | |
new_height = int(resolution / aspect_ratio) | |
else: | |
new_height = resolution | |
new_width = int(resolution * aspect_ratio) | |
resized_x = F.interpolate(x, size=(new_height, new_width), mode='bilinear', align_corners=True, antialias=True) | |
return resized_x | |
def _preprocess(video_data, short_size=128, crop_size=None): | |
transform = Compose( | |
[ | |
Lambda(lambda x: ((x / 255.0) * 2 - 1)), | |
Lambda(lambda x: resize(x, short_size)), | |
( | |
CenterCropVideo(crop_size=crop_size) | |
if crop_size is not None | |
else Lambda(lambda x: x) | |
), | |
] | |
) | |
video_outputs = transform(video_data) | |
video_outputs = _format_video_shape(video_outputs) | |
return video_outputs | |
def _format_video_shape(video, time_compress=4, spatial_compress=8): | |
time = video.shape[1] | |
height = video.shape[2] | |
width = video.shape[3] | |
new_time = ( | |
(time - (time - 1) % time_compress) | |
if (time - 1) % time_compress != 0 | |
else time | |
) | |
new_height = ( | |
(height - (height) % spatial_compress) | |
if height % spatial_compress != 0 | |
else height | |
) | |
new_width = ( | |
(width - (width) % spatial_compress) if width % spatial_compress != 0 else width | |
) | |
return video[:, :new_time, :new_height, :new_width] | |
def main(args: argparse.Namespace): | |
real_video_dir = args.real_video_dir | |
generated_video_dir = args.generated_video_dir | |
ckpt = args.ckpt | |
sample_rate = args.sample_rate | |
resolution = args.resolution | |
crop_size = args.crop_size | |
num_frames = args.num_frames | |
sample_rate = args.sample_rate | |
device = args.device | |
sample_fps = args.sample_fps | |
batch_size = args.batch_size | |
num_workers = args.num_workers | |
subset_size = args.subset_size | |
if not os.path.exists(args.generated_video_dir): | |
os.makedirs(args.generated_video_dir, exist_ok=True) | |
data_type = torch.bfloat16 | |
# ---- Load Model ---- | |
device = args.device | |
vqvae = CausalVAEModel.from_pretrained(args.ckpt) | |
vqvae = vqvae.to(device).to(data_type) | |
if args.enable_tiling: | |
vqvae.enable_tiling() | |
vqvae.tile_overlap_factor = args.tile_overlap_factor | |
# ---- Load Model ---- | |
# ---- Prepare Dataset ---- | |
dataset = RealVideoDataset( | |
real_video_dir=real_video_dir, | |
num_frames=num_frames, | |
sample_rate=sample_rate, | |
crop_size=crop_size, | |
resolution=resolution, | |
) | |
if subset_size: | |
indices = range(subset_size) | |
dataset = Subset(dataset, indices=indices) | |
dataloader = DataLoader( | |
dataset, batch_size=batch_size, pin_memory=True, num_workers=num_workers | |
) | |
# ---- Prepare Dataset | |
# ---- Inference ---- | |
for batch in tqdm(dataloader): | |
x, file_names = batch['video'], batch['file_name'] | |
x = x.to(device=device, dtype=data_type) # b c t h w | |
latents = vqvae.encode(x).sample().to(data_type) | |
video_recon = vqvae.decode(latents) | |
for idx, video in enumerate(video_recon): | |
output_path = os.path.join(generated_video_dir, file_names[idx]) | |
if args.output_origin: | |
os.makedirs(os.path.join(generated_video_dir, "origin/"), exist_ok=True) | |
origin_output_path = os.path.join(generated_video_dir, "origin/", file_names[idx]) | |
custom_to_video( | |
x[idx], fps=sample_fps / sample_rate, output_file=origin_output_path | |
) | |
custom_to_video( | |
video, fps=sample_fps / sample_rate, output_file=output_path | |
) | |
# ---- Inference ---- | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--real_video_dir", type=str, default="") | |
parser.add_argument("--generated_video_dir", type=str, default="") | |
parser.add_argument("--ckpt", type=str, default="") | |
parser.add_argument("--sample_fps", type=int, default=30) | |
parser.add_argument("--resolution", type=int, default=336) | |
parser.add_argument("--crop_size", type=int, default=None) | |
parser.add_argument("--num_frames", type=int, default=17) | |
parser.add_argument("--sample_rate", type=int, default=1) | |
parser.add_argument("--batch_size", type=int, default=1) | |
parser.add_argument("--num_workers", type=int, default=8) | |
parser.add_argument("--subset_size", type=int, default=None) | |
parser.add_argument("--tile_overlap_factor", type=float, default=0.25) | |
parser.add_argument('--enable_tiling', action='store_true') | |
parser.add_argument('--output_origin', action='store_true') | |
parser.add_argument("--device", type=str, default="cuda") | |
args = parser.parse_args() | |
main(args) | |