Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
import torch | |
import getopt | |
import math | |
import numpy | |
import os | |
import PIL | |
import PIL.Image | |
import sys | |
# try: | |
from .correlation import correlation # the custom cost volume layer | |
# except: | |
# sys.path.insert(0, './correlation'); import correlation # you should consider upgrading python | |
# end | |
########################################################## | |
# assert(int(str('').join(torch.__version__.split('.')[0:2])) >= 13) # requires at least pytorch version 1.3.0 | |
# torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance | |
# torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance | |
# ########################################################## | |
# arguments_strModel = 'default' # 'default', or 'chairs-things' | |
# arguments_strFirst = './images/first.png' | |
# arguments_strSecond = './images/second.png' | |
# arguments_strOut = './out.flo' | |
# for strOption, strArgument in getopt.getopt(sys.argv[1:], '', [ strParameter[2:] + '=' for strParameter in sys.argv[1::2] ])[0]: | |
# if strOption == '--model' and strArgument != '': arguments_strModel = strArgument # which model to use | |
# if strOption == '--first' and strArgument != '': arguments_strFirst = strArgument # path to the first frame | |
# if strOption == '--second' and strArgument != '': arguments_strSecond = strArgument # path to the second frame | |
# if strOption == '--out' and strArgument != '': arguments_strOut = strArgument # path to where the output should be stored | |
# end | |
########################################################## | |
def backwarp(tenInput, tenFlow): | |
backwarp_tenGrid = {} | |
backwarp_tenPartial = {} | |
if str(tenFlow.shape) not in backwarp_tenGrid: | |
tenHor = torch.linspace(-1.0 + (1.0 / tenFlow.shape[3]), 1.0 - (1.0 / tenFlow.shape[3]), tenFlow.shape[3]).view(1, 1, 1, -1).expand(-1, -1, tenFlow.shape[2], -1) | |
tenVer = torch.linspace(-1.0 + (1.0 / tenFlow.shape[2]), 1.0 - (1.0 / tenFlow.shape[2]), tenFlow.shape[2]).view(1, 1, -1, 1).expand(-1, -1, -1, tenFlow.shape[3]) | |
backwarp_tenGrid[str(tenFlow.shape)] = torch.cat([ tenHor, tenVer ], 1).cuda() | |
# end | |
if str(tenFlow.shape) not in backwarp_tenPartial: | |
backwarp_tenPartial[str(tenFlow.shape)] = tenFlow.new_ones([ tenFlow.shape[0], 1, tenFlow.shape[2], tenFlow.shape[3] ]) | |
# end | |
tenFlow = torch.cat([ tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0) ], 1) | |
tenInput = torch.cat([ tenInput, backwarp_tenPartial[str(tenFlow.shape)] ], 1) | |
tenOutput = torch.nn.functional.grid_sample(input=tenInput, grid=(backwarp_tenGrid[str(tenFlow.shape)] + tenFlow).permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros', align_corners=False) | |
tenMask = tenOutput[:, -1:, :, :]; tenMask[tenMask > 0.999] = 1.0; tenMask[tenMask < 1.0] = 0.0 | |
return tenOutput[:, :-1, :, :] * tenMask | |
# end | |
########################################################## | |
class Network(torch.nn.Module): | |
def __init__(self): | |
super(Network, self).__init__() | |
class Extractor(torch.nn.Module): | |
def __init__(self): | |
super(Extractor, self).__init__() | |
self.netOne = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
self.netTwo = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=2, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
self.netThr = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
self.netFou = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=64, out_channels=96, kernel_size=3, stride=2, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
self.netFiv = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=96, out_channels=128, kernel_size=3, stride=2, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
self.netSix = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=128, out_channels=196, kernel_size=3, stride=2, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=196, out_channels=196, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=196, out_channels=196, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
# end | |
def forward(self, tenInput): | |
tenOne = self.netOne(tenInput) | |
tenTwo = self.netTwo(tenOne) | |
tenThr = self.netThr(tenTwo) | |
tenFou = self.netFou(tenThr) | |
tenFiv = self.netFiv(tenFou) | |
tenSix = self.netSix(tenFiv) | |
return [ tenOne, tenTwo, tenThr, tenFou, tenFiv, tenSix ] | |
# end | |
# end | |
class Decoder(torch.nn.Module): | |
def __init__(self, intLevel): | |
super(Decoder, self).__init__() | |
intPrevious = [ None, None, 81 + 32 + 2 + 2, 81 + 64 + 2 + 2, 81 + 96 + 2 + 2, 81 + 128 + 2 + 2, 81, None ][intLevel + 1] | |
intCurrent = [ None, None, 81 + 32 + 2 + 2, 81 + 64 + 2 + 2, 81 + 96 + 2 + 2, 81 + 128 + 2 + 2, 81, None ][intLevel + 0] | |
if intLevel < 6: self.netUpflow = torch.nn.ConvTranspose2d(in_channels=2, out_channels=2, kernel_size=4, stride=2, padding=1) | |
if intLevel < 6: self.netUpfeat = torch.nn.ConvTranspose2d(in_channels=intPrevious + 128 + 128 + 96 + 64 + 32, out_channels=2, kernel_size=4, stride=2, padding=1) | |
if intLevel < 6: self.fltBackwarp = [ None, None, None, 5.0, 2.5, 1.25, 0.625, None ][intLevel + 1] | |
self.netOne = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=intCurrent, out_channels=128, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
self.netTwo = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=intCurrent + 128, out_channels=128, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
self.netThr = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=intCurrent + 128 + 128, out_channels=96, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
self.netFou = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=intCurrent + 128 + 128 + 96, out_channels=64, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
self.netFiv = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=intCurrent + 128 + 128 + 96 + 64, out_channels=32, kernel_size=3, stride=1, padding=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) | |
) | |
self.netSix = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=intCurrent + 128 + 128 + 96 + 64 + 32, out_channels=2, kernel_size=3, stride=1, padding=1) | |
) | |
# end | |
def forward(self, tenFirst, tenSecond, objPrevious): | |
tenFlow = None | |
tenFeat = None | |
if objPrevious is None: | |
tenFlow = None | |
tenFeat = None | |
tenVolume = torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tenFirst=tenFirst, tenSecond=tenSecond), negative_slope=0.1, inplace=False) | |
tenFeat = torch.cat([ tenVolume ], 1) | |
elif objPrevious is not None: | |
tenFlow = self.netUpflow(objPrevious['tenFlow']) | |
tenFeat = self.netUpfeat(objPrevious['tenFeat']) | |
tenVolume = torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tenFirst=tenFirst, tenSecond=backwarp(tenInput=tenSecond, tenFlow=tenFlow * self.fltBackwarp)), negative_slope=0.1, inplace=False) | |
tenFeat = torch.cat([ tenVolume, tenFirst, tenFlow, tenFeat ], 1) | |
# end | |
tenFeat = torch.cat([ self.netOne(tenFeat), tenFeat ], 1) | |
tenFeat = torch.cat([ self.netTwo(tenFeat), tenFeat ], 1) | |
tenFeat = torch.cat([ self.netThr(tenFeat), tenFeat ], 1) | |
tenFeat = torch.cat([ self.netFou(tenFeat), tenFeat ], 1) | |
tenFeat = torch.cat([ self.netFiv(tenFeat), tenFeat ], 1) | |
tenFlow = self.netSix(tenFeat) | |
return { | |
'tenFlow': tenFlow, | |
'tenFeat': tenFeat | |
} | |
# end | |
# end | |
class Refiner(torch.nn.Module): | |
def __init__(self): | |
super(Refiner, self).__init__() | |
self.netMain = torch.nn.Sequential( | |
torch.nn.Conv2d(in_channels=81 + 32 + 2 + 2 + 128 + 128 + 96 + 64 + 32, out_channels=128, kernel_size=3, stride=1, padding=1, dilation=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=2, dilation=2), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=4, dilation=4), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=128, out_channels=96, kernel_size=3, stride=1, padding=8, dilation=8), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=96, out_channels=64, kernel_size=3, stride=1, padding=16, dilation=16), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1, dilation=1), | |
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), | |
torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1, dilation=1) | |
) | |
# end | |
def forward(self, tenInput): | |
return self.netMain(tenInput) | |
# end | |
# end | |
self.netExtractor = Extractor() | |
self.netTwo = Decoder(2) | |
self.netThr = Decoder(3) | |
self.netFou = Decoder(4) | |
self.netFiv = Decoder(5) | |
self.netSix = Decoder(6) | |
self.netRefiner = Refiner() | |
self.load_state_dict({ strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.hub.load_state_dict_from_url(url='http://content.sniklaus.com/github/pytorch-pwc/network-' + 'default' + '.pytorch').items() }) | |
# end | |
def forward(self, tenFirst, tenSecond): | |
intWidth = tenFirst.shape[3] | |
intHeight = tenFirst.shape[2] | |
intPreprocessedWidth = int(math.floor(math.ceil(intWidth / 64.0) * 64.0)) | |
intPreprocessedHeight = int(math.floor(math.ceil(intHeight / 64.0) * 64.0)) | |
tenPreprocessedFirst = torch.nn.functional.interpolate(input=tenFirst, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False) | |
tenPreprocessedSecond = torch.nn.functional.interpolate(input=tenSecond, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False) | |
tenFirst = self.netExtractor(tenPreprocessedFirst) | |
tenSecond = self.netExtractor(tenPreprocessedSecond) | |
objEstimate = self.netSix(tenFirst[-1], tenSecond[-1], None) | |
objEstimate = self.netFiv(tenFirst[-2], tenSecond[-2], objEstimate) | |
objEstimate = self.netFou(tenFirst[-3], tenSecond[-3], objEstimate) | |
objEstimate = self.netThr(tenFirst[-4], tenSecond[-4], objEstimate) | |
objEstimate = self.netTwo(tenFirst[-5], tenSecond[-5], objEstimate) | |
tenFlow = objEstimate['tenFlow'] + self.netRefiner(objEstimate['tenFeat']) | |
tenFlow = 20.0 * torch.nn.functional.interpolate(input=tenFlow, size=(intHeight, intWidth), mode='bilinear', align_corners=False) | |
tenFlow[:, 0, :, :] *= float(intWidth) / float(intPreprocessedWidth) | |
tenFlow[:, 1, :, :] *= float(intHeight) / float(intPreprocessedHeight) | |
return tenFlow | |
# end | |
# end | |
netNetwork = None | |
########################################################## | |
def estimate(tenFirst, tenSecond): | |
global netNetwork | |
if netNetwork is None: | |
netNetwork = Network().cuda().eval() | |
# end | |
assert(tenFirst.shape[1] == tenSecond.shape[1]) | |
assert(tenFirst.shape[2] == tenSecond.shape[2]) | |
intWidth = tenFirst.shape[2] | |
intHeight = tenFirst.shape[1] | |
assert(intWidth == 1024) # remember that there is no guarantee for correctness, comment this line out if you acknowledge this and want to continue | |
assert(intHeight == 436) # remember that there is no guarantee for correctness, comment this line out if you acknowledge this and want to continue | |
tenPreprocessedFirst = tenFirst.cuda().view(1, 3, intHeight, intWidth) | |
tenPreprocessedSecond = tenSecond.cuda().view(1, 3, intHeight, intWidth) | |
intPreprocessedWidth = int(math.floor(math.ceil(intWidth / 64.0) * 64.0)) | |
intPreprocessedHeight = int(math.floor(math.ceil(intHeight / 64.0) * 64.0)) | |
tenPreprocessedFirst = torch.nn.functional.interpolate(input=tenPreprocessedFirst, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False) | |
tenPreprocessedSecond = torch.nn.functional.interpolate(input=tenPreprocessedSecond, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False) | |
tenFlow = 20.0 * torch.nn.functional.interpolate(input=netNetwork(tenPreprocessedFirst, tenPreprocessedSecond), size=(intHeight, intWidth), mode='bilinear', align_corners=False) | |
tenFlow[:, 0, :, :] *= float(intWidth) / float(intPreprocessedWidth) | |
tenFlow[:, 1, :, :] *= float(intHeight) / float(intPreprocessedHeight) | |
return tenFlow[0, :, :, :].cpu() | |
# end | |
########################################################## | |
# if __name__ == '__main__': | |
# tenFirst = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(arguments_strFirst))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))) | |
# tenSecond = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(arguments_strSecond))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))) | |
# tenOutput = estimate(tenFirst, tenSecond) | |
# objOutput = open(arguments_strOut, 'wb') | |
# numpy.array([ 80, 73, 69, 72 ], numpy.uint8).tofile(objOutput) | |
# numpy.array([ tenOutput.shape[2], tenOutput.shape[1] ], numpy.int32).tofile(objOutput) | |
# numpy.array(tenOutput.numpy().transpose(1, 2, 0), numpy.float32).tofile(objOutput) | |
# objOutput.close() | |
# end |