LinB203
update
bab971b
raw
history blame
2.23 kB
import numpy as np
import torch
from tqdm import tqdm
import math
def img_psnr(img1, img2):
# [0,1]
# compute mse
# mse = np.mean((img1-img2)**2)
mse = np.mean((img1 / 1.0 - img2 / 1.0) ** 2)
# compute psnr
if mse < 1e-10:
return 100
psnr = 20 * math.log10(1 / math.sqrt(mse))
return psnr
def trans(x):
return x
def calculate_psnr(videos1, videos2):
print("calculate_psnr...")
# videos [batch_size, timestamps, channel, h, w]
assert videos1.shape == videos2.shape
videos1 = trans(videos1)
videos2 = trans(videos2)
psnr_results = []
for video_num in tqdm(range(videos1.shape[0])):
# get a video
# video [timestamps, channel, h, w]
video1 = videos1[video_num]
video2 = videos2[video_num]
psnr_results_of_a_video = []
for clip_timestamp in range(len(video1)):
# get a img
# img [timestamps[x], channel, h, w]
# img [channel, h, w] numpy
img1 = video1[clip_timestamp].numpy()
img2 = video2[clip_timestamp].numpy()
# calculate psnr of a video
psnr_results_of_a_video.append(img_psnr(img1, img2))
psnr_results.append(psnr_results_of_a_video)
psnr_results = np.array(psnr_results) # [batch_size, num_frames]
psnr = {}
psnr_std = {}
for clip_timestamp in range(len(video1)):
psnr[clip_timestamp] = np.mean(psnr_results[:,clip_timestamp])
psnr_std[clip_timestamp] = np.std(psnr_results[:,clip_timestamp])
result = {
"value": psnr,
"value_std": psnr_std,
"video_setting": video1.shape,
"video_setting_name": "time, channel, heigth, width",
}
return result
# test code / using example
def main():
NUMBER_OF_VIDEOS = 8
VIDEO_LENGTH = 50
CHANNEL = 3
SIZE = 64
videos1 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
videos2 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
import json
result = calculate_psnr(videos1, videos2)
print(json.dumps(result, indent=4))
if __name__ == "__main__":
main()