Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,33 +2,6 @@ import os
|
|
| 2 |
import subprocess
|
| 3 |
import os
|
| 4 |
from pathlib import Path
|
| 5 |
-
BASE_DIR = Path("/home/user/app")
|
| 6 |
-
commands = [
|
| 7 |
-
("python -V", BASE_DIR),
|
| 8 |
-
("pip install -r my_requirements.txt", BASE_DIR)
|
| 9 |
-
]
|
| 10 |
-
|
| 11 |
-
def run_command(cmd, cwd=None):
|
| 12 |
-
try:
|
| 13 |
-
result = subprocess.run(
|
| 14 |
-
cmd, # 注意:这里不再使用 shlex.split()
|
| 15 |
-
cwd=str(cwd) if cwd else None,
|
| 16 |
-
shell=True, # 需要 shell=True 来支持 && 等操作符
|
| 17 |
-
check=True,
|
| 18 |
-
stdout=subprocess.PIPE,
|
| 19 |
-
stderr=subprocess.PIPE,
|
| 20 |
-
text=True
|
| 21 |
-
)
|
| 22 |
-
print(f"[SUCCESS] {cmd}")
|
| 23 |
-
if result.stdout: print(result.stdout)
|
| 24 |
-
return True
|
| 25 |
-
except subprocess.CalledProcessError as e:
|
| 26 |
-
print(f"[FAILED] {cmd}")
|
| 27 |
-
print(f"Error: {e.stderr}")
|
| 28 |
-
return False
|
| 29 |
-
|
| 30 |
-
for cmd, cwd in commands:
|
| 31 |
-
run_command(cmd, cwd)
|
| 32 |
|
| 33 |
import re
|
| 34 |
import gradio as gr
|
|
@@ -45,12 +18,7 @@ from gradio_image_annotation import image_annotator
|
|
| 45 |
from werkzeug.utils import secure_filename # Add this import
|
| 46 |
from utils.system_prompt import SHORT_SYSTEM_PROMPT_WITH_THINKING
|
| 47 |
from utils.lua_converter import LuaConverter
|
| 48 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 49 |
-
from qwen_vl_utils import process_vision_info
|
| 50 |
-
import torch
|
| 51 |
from utils.lua2lrt import lua_to_lrtemplate
|
| 52 |
-
from huggingface_hub import snapshot_download
|
| 53 |
-
import spaces
|
| 54 |
|
| 55 |
|
| 56 |
def extract_json_from_answer(answer):
|
|
@@ -178,40 +146,6 @@ def json_to_lua(json_data, save_folder, filename="config.lua"):
|
|
| 178 |
except Exception as e:
|
| 179 |
return None, f"Error in json_to_lua: {str(e)}"
|
| 180 |
|
| 181 |
-
# Model downloader
|
| 182 |
-
def download_tools_ckpts(target_dir, url):
|
| 183 |
-
from huggingface_hub import snapshot_download
|
| 184 |
-
import os
|
| 185 |
-
import shutil
|
| 186 |
-
|
| 187 |
-
tmp_dir = "hf_temp_download"
|
| 188 |
-
os.makedirs(tmp_dir, exist_ok=True)
|
| 189 |
-
|
| 190 |
-
snapshot_download(
|
| 191 |
-
repo_id="JarvisArt/JarvisArt-Preview",
|
| 192 |
-
repo_type="model",
|
| 193 |
-
local_dir=tmp_dir,
|
| 194 |
-
allow_patterns=os.path.join(url, "**"),
|
| 195 |
-
local_dir_use_symlinks=False,
|
| 196 |
-
)
|
| 197 |
-
|
| 198 |
-
src_dir = os.path.join(tmp_dir, url)
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
shutil.copytree(src_dir, target_dir)
|
| 202 |
-
|
| 203 |
-
shutil.rmtree(tmp_dir)
|
| 204 |
-
def download_model(model_path):
|
| 205 |
-
"""
|
| 206 |
-
Download model from HuggingFace if not exists locally
|
| 207 |
-
|
| 208 |
-
Args:
|
| 209 |
-
model_path (str): Path to save the model
|
| 210 |
-
"""
|
| 211 |
-
if not os.path.exists(model_path):
|
| 212 |
-
download_tools_ckpts(model_path, "pretrained/preview")
|
| 213 |
-
else:
|
| 214 |
-
print(f"✅ Model already exists at {model_path}")
|
| 215 |
|
| 216 |
# Local model client class
|
| 217 |
class LocalModelClient:
|
|
@@ -226,42 +160,13 @@ class LocalModelClient:
|
|
| 226 |
self.model = None
|
| 227 |
self.processor = None
|
| 228 |
self.model_loaded = False
|
| 229 |
-
|
| 230 |
-
# Download model if needed
|
| 231 |
-
download_model(model_path)
|
| 232 |
|
| 233 |
# Load model
|
| 234 |
self._load_model()
|
| 235 |
|
| 236 |
def _load_model(self):
|
| 237 |
-
""
|
| 238 |
-
Load the model and processor
|
| 239 |
-
"""
|
| 240 |
-
try:
|
| 241 |
-
print(f"🔄 Loading model from {self.model_path}...")
|
| 242 |
-
|
| 243 |
-
# Model configuration
|
| 244 |
-
min_pixels = 256 * 28 * 28
|
| 245 |
-
max_pixels = 1280 * 28 * 28
|
| 246 |
-
|
| 247 |
-
# Load model
|
| 248 |
-
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 249 |
-
self.model_path,
|
| 250 |
-
torch_dtype="auto",
|
| 251 |
-
device_map="auto",
|
| 252 |
-
min_pixels=min_pixels,
|
| 253 |
-
max_pixels=max_pixels
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
# Load processor
|
| 257 |
-
self.processor = AutoProcessor.from_pretrained(self.model_path)
|
| 258 |
-
|
| 259 |
-
print(f"✅ Model loaded successfully from {self.model_path}")
|
| 260 |
-
self.model_loaded = True
|
| 261 |
-
|
| 262 |
-
except Exception as e:
|
| 263 |
-
print(f"❌ Model loading failed: {str(e)}")
|
| 264 |
-
self.model_loaded = False
|
| 265 |
|
| 266 |
def chat(self, messages, system=None, images=None, **kwargs):
|
| 267 |
"""
|
|
@@ -328,31 +233,8 @@ class LocalModelClient:
|
|
| 328 |
formatted_messages, tokenize=False, add_generation_prompt=True
|
| 329 |
)
|
| 330 |
|
| 331 |
-
# Process vision info
|
| 332 |
-
image_inputs, video_inputs = process_vision_info(formatted_messages)
|
| 333 |
-
|
| 334 |
-
# Prepare inputs
|
| 335 |
-
inputs = self.processor(
|
| 336 |
-
text=[text],
|
| 337 |
-
images=image_inputs,
|
| 338 |
-
videos=video_inputs,
|
| 339 |
-
padding=True,
|
| 340 |
-
return_tensors="pt",
|
| 341 |
-
)
|
| 342 |
-
|
| 343 |
-
# Move inputs to device
|
| 344 |
-
device = next(self.model.parameters()).device
|
| 345 |
-
inputs = inputs.to(device)
|
| 346 |
-
|
| 347 |
-
# Generate response
|
| 348 |
-
generated_ids = self.model.generate(**inputs, max_new_tokens=10240)
|
| 349 |
-
generated_ids_trimmed = [
|
| 350 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 351 |
-
]
|
| 352 |
-
output_text = self.processor.batch_decode(
|
| 353 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 354 |
-
)
|
| 355 |
|
|
|
|
| 356 |
# Create Response object for compatibility
|
| 357 |
class Response:
|
| 358 |
def __init__(self, text):
|
|
@@ -484,13 +366,13 @@ def parse_args():
|
|
| 484 |
parser.add_argument(
|
| 485 |
"--server_port",
|
| 486 |
type=int,
|
| 487 |
-
default=
|
| 488 |
help="Port for the Gradio server"
|
| 489 |
)
|
| 490 |
parser.add_argument(
|
| 491 |
"--server_name",
|
| 492 |
type=str,
|
| 493 |
-
default="
|
| 494 |
help="Server name/IP for the Gradio server"
|
| 495 |
)
|
| 496 |
parser.add_argument(
|
|
@@ -710,7 +592,7 @@ def get_box_coordinates(annotated_image_dict, prompt_original):
|
|
| 710 |
image_key = str(input_image) # Use string representation as key
|
| 711 |
|
| 712 |
last_box = annotated_image_dict["boxes"][-1]
|
| 713 |
-
width, height = pil_image.
|
| 714 |
|
| 715 |
xmin = last_box["xmin"] / width
|
| 716 |
ymin = last_box["ymin"] / height
|
|
@@ -719,7 +601,7 @@ def get_box_coordinates(annotated_image_dict, prompt_original):
|
|
| 719 |
|
| 720 |
local_dict[image_key] = [xmin, ymin, xmax, ymax]
|
| 721 |
# Format the coordinates into a string
|
| 722 |
-
|
| 723 |
return str([xmin, ymin, xmax, ymax]), f"In the region <box>{str([xmin, ymin, xmax, ymax])}</box>, {prompt_original}"
|
| 724 |
return "No box drawn", prompt_original
|
| 725 |
|
|
@@ -743,7 +625,7 @@ def get_box_coordinates_simple(annotated_image_dict):
|
|
| 743 |
image_key = str(input_image) # Use string representation as key
|
| 744 |
|
| 745 |
last_box = annotated_image_dict["boxes"][-1]
|
| 746 |
-
|
| 747 |
|
| 748 |
xmin = last_box["xmin"] / width
|
| 749 |
ymin = last_box["ymin"] / height
|
|
@@ -752,406 +634,12 @@ def get_box_coordinates_simple(annotated_image_dict):
|
|
| 752 |
|
| 753 |
local_dict[image_key] = [xmin, ymin, xmax, ymax]
|
| 754 |
# Format the coordinates into a string
|
| 755 |
-
|
| 756 |
return str([xmin, ymin, xmax, ymax])
|
| 757 |
return "No bounding box drawn yet."
|
| 758 |
|
| 759 |
-
@spaces.GPU
|
| 760 |
def process_analysis_pipeline_stream(image_dict, user_prompt, max_new_tokens, top_k, top_p, temperature):
|
| 761 |
-
""
|
| 762 |
-
Main analysis pipeline with streaming output, modern chat interface style, and image display support
|
| 763 |
-
|
| 764 |
-
Args:
|
| 765 |
-
image (str): Path to the input image
|
| 766 |
-
user_prompt (str): User-defined prompt for analysis
|
| 767 |
-
max_new_tokens (int): Maximum number of new tokens to generate
|
| 768 |
-
top_k (int): Top-k sampling parameter
|
| 769 |
-
top_p (float): Top-p (nucleus) sampling parameter
|
| 770 |
-
temperature (float): Temperature for sampling
|
| 771 |
-
|
| 772 |
-
Yields:
|
| 773 |
-
list: Updated chat_history for Gradio UI updates (messages format)
|
| 774 |
-
"""
|
| 775 |
-
if image_dict is None or image_dict.get('image') is None:
|
| 776 |
-
yield [
|
| 777 |
-
{"role": "user", "content": "Please upload an image first! 📸"},
|
| 778 |
-
{"role": "assistant", "content": "I need an image to analyze before I can provide editing recommendations."}
|
| 779 |
-
], None
|
| 780 |
-
return
|
| 781 |
-
|
| 782 |
-
# Extract image from the image_dict
|
| 783 |
-
image = image_dict['image']
|
| 784 |
-
|
| 785 |
-
# Handle the case where image is a PIL Image object - need to save it temporarily
|
| 786 |
-
if not isinstance(image, str):
|
| 787 |
-
import tempfile
|
| 788 |
-
import os
|
| 789 |
-
# Save PIL image to temporary file
|
| 790 |
-
temp_dir = tempfile.gettempdir()
|
| 791 |
-
temp_path = os.path.join(temp_dir, f"temp_image_{hash(str(image))}.png")
|
| 792 |
-
image.save(temp_path)
|
| 793 |
-
image = temp_path
|
| 794 |
-
|
| 795 |
-
if not user_prompt.strip():
|
| 796 |
-
user_prompt = default_user_prompt
|
| 797 |
-
elif len(local_dict) > 0 and image in local_dict and local_dict[image][0] != local_dict[image][2]:
|
| 798 |
-
user_prompt = user_prompt.replace('<box></box>', f'<box>{str(local_dict[image])}</box>')
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
try:
|
| 802 |
-
# Initialize chat history with user message including image
|
| 803 |
-
chat_history = []
|
| 804 |
-
|
| 805 |
-
# Create user message with image and instructions - using messages format
|
| 806 |
-
user_message_text = f"**Instructions:** {user_prompt}".replace('<box>', f'(').replace('</box>', f')')
|
| 807 |
-
|
| 808 |
-
# Add user message with image
|
| 809 |
-
if image_dict:
|
| 810 |
-
# For messages format, we need to handle images differently
|
| 811 |
-
# First add the image
|
| 812 |
-
chat_history.append({
|
| 813 |
-
"role": "user",
|
| 814 |
-
"content": {
|
| 815 |
-
"path": image,
|
| 816 |
-
"mime_type": "image/jpeg"
|
| 817 |
-
}
|
| 818 |
-
})
|
| 819 |
-
# Then add text message
|
| 820 |
-
chat_history.append({
|
| 821 |
-
"role": "user",
|
| 822 |
-
"content": user_message_text
|
| 823 |
-
})
|
| 824 |
-
else:
|
| 825 |
-
chat_history.append({
|
| 826 |
-
"role": "user",
|
| 827 |
-
"content": user_message_text
|
| 828 |
-
})
|
| 829 |
-
yield chat_history, None
|
| 830 |
-
|
| 831 |
-
# JarvisArt starts responding
|
| 832 |
-
chat_history.append({
|
| 833 |
-
"role": "assistant",
|
| 834 |
-
"content": "<div style='margin:0;padding:0'>🎨 <strong style='margin:0;padding:0'>JarvisArt is analyzing your image...</strong><br/><em>Please wait while I examine the details and understand your vision.</em></div>"
|
| 835 |
-
})
|
| 836 |
-
ai_message_index = len(chat_history) - 1 # Record AI message index position
|
| 837 |
-
recommendations_index = None # Initialize recommendations message index
|
| 838 |
-
yield chat_history, None
|
| 839 |
-
|
| 840 |
-
# Get streaming response
|
| 841 |
-
full_response = ""
|
| 842 |
-
token_count = 0
|
| 843 |
-
update_frequency = 8 # Reduce update frequency for smoother experience
|
| 844 |
-
|
| 845 |
-
# Stage marker
|
| 846 |
-
stage = "starting" # starting, thinking, answer, completed
|
| 847 |
-
answer_completed = False # Flag to track if answer is completed
|
| 848 |
-
|
| 849 |
-
for new_token in get_llm_response_with_custom_prompt_stream(
|
| 850 |
-
image, user_prompt, max_new_tokens, top_k, top_p, temperature
|
| 851 |
-
):
|
| 852 |
-
full_response += new_token
|
| 853 |
-
token_count += 1
|
| 854 |
-
|
| 855 |
-
# Detect thinking stage
|
| 856 |
-
if "<think>" in full_response and stage == "starting":
|
| 857 |
-
stage = "thinking"
|
| 858 |
-
chat_history[ai_message_index] = {
|
| 859 |
-
"role": "assistant",
|
| 860 |
-
"content": "💭 **Thinking Process**\n*Analyzing image characteristics and understanding your creative vision...*"
|
| 861 |
-
}
|
| 862 |
-
yield chat_history, None
|
| 863 |
-
continue
|
| 864 |
-
|
| 865 |
-
# Thinking completed
|
| 866 |
-
if "</think>" in full_response and stage == "thinking":
|
| 867 |
-
stage = "between"
|
| 868 |
-
think_match = re.search(r'<think>(.*?)</think>', full_response, re.DOTALL)
|
| 869 |
-
if think_match:
|
| 870 |
-
thinking_content = think_match.group(1).strip()
|
| 871 |
-
# Use the compact_text function to process text
|
| 872 |
-
thinking_content = compact_text(thinking_content).replace('<box>', f'(').replace('</box>', f')')
|
| 873 |
-
# Use special formatting to force eliminate spacing
|
| 874 |
-
formatted_thinking = f"<div style='margin:0;padding:0'>💭 <strong style='margin:0;padding:0'>Thinking</strong><div style='margin:0;padding:0'>{thinking_content}</div></div>"
|
| 875 |
-
chat_history[ai_message_index] = {
|
| 876 |
-
"role": "assistant",
|
| 877 |
-
"content": formatted_thinking
|
| 878 |
-
}
|
| 879 |
-
yield chat_history, None
|
| 880 |
-
continue
|
| 881 |
-
|
| 882 |
-
# Detect answer stage
|
| 883 |
-
if "<answer>" in full_response and stage in ["between", "thinking"]:
|
| 884 |
-
stage = "answer"
|
| 885 |
-
# Use special formatting to force eliminate spacing
|
| 886 |
-
initial_recommendations = "<div style='margin:0;padding:0;margin-top:-30px'>✨ <strong style='margin:0;padding:0'>Professional Editing Recommendations</strong><div style='margin:0;padding:0'>*Generating personalized editing suggestions...*</div></div>"
|
| 887 |
-
chat_history.append({
|
| 888 |
-
"role": "assistant",
|
| 889 |
-
"content": initial_recommendations
|
| 890 |
-
})
|
| 891 |
-
recommendations_index = len(chat_history) - 1 # Record recommendations message index
|
| 892 |
-
yield chat_history, None
|
| 893 |
-
continue
|
| 894 |
-
|
| 895 |
-
# Answer completed
|
| 896 |
-
if "</answer>" in full_response and stage == "answer" and not answer_completed:
|
| 897 |
-
stage = "completed"
|
| 898 |
-
answer_completed = True
|
| 899 |
-
answer_match = re.search(r'<answer>(.*?)</answer>', full_response, re.DOTALL)
|
| 900 |
-
if answer_match:
|
| 901 |
-
answer_content = answer_match.group(1).strip()
|
| 902 |
-
# Use the compact_text function to process text
|
| 903 |
-
answer_content = compact_text(answer_content)
|
| 904 |
-
|
| 905 |
-
# Use special formatting to force eliminate spacing
|
| 906 |
-
formatted_answer = f"<div style='margin:0;padding:0;margin-top:-30px'>✨ <strong style='margin:0;padding:0'>Professional Editing Recommendations</strong><div style='margin:0;padding:0'>{answer_content}</div></div>"
|
| 907 |
-
|
| 908 |
-
chat_history[recommendations_index] = {
|
| 909 |
-
"role": "assistant",
|
| 910 |
-
"content": formatted_answer
|
| 911 |
-
}
|
| 912 |
-
yield chat_history
|
| 913 |
-
# Don't break here - continue to Final completion for JSON extraction
|
| 914 |
-
|
| 915 |
-
# Real-time content updates (reduced frequency) - only if answer not completed
|
| 916 |
-
if token_count % update_frequency == 0 and not answer_completed:
|
| 917 |
-
if stage == "thinking":
|
| 918 |
-
current_thinking = full_response.split("<think>")[-1].replace("</think>", "").strip()
|
| 919 |
-
if current_thinking and len(current_thinking) > 20: # Avoid displaying too short content
|
| 920 |
-
# Use the compact_text function to process text
|
| 921 |
-
current_thinking = compact_text(current_thinking)
|
| 922 |
-
# Use special formatting to force eliminate spacing
|
| 923 |
-
formatted_thinking = f"<div style='margin:0;padding:0'>💭 <strong style='margin:0;padding:0'>Thinking</strong><div style='margin:0;padding:0'>{current_thinking}...<br/><em>Still analyzing...</em></div></div>"
|
| 924 |
-
chat_history[ai_message_index] = {
|
| 925 |
-
"role": "assistant",
|
| 926 |
-
"content": formatted_thinking
|
| 927 |
-
}
|
| 928 |
-
yield chat_history
|
| 929 |
-
|
| 930 |
-
elif stage == "answer":
|
| 931 |
-
current_answer = full_response.split("<answer>")[-1].replace("</answer>", "").strip()
|
| 932 |
-
if current_answer and len(current_answer) > 30: # Avoid displaying too short content
|
| 933 |
-
# Use the compact_text function to process text
|
| 934 |
-
current_answer = compact_text(current_answer)
|
| 935 |
-
# Use special formatting to force eliminate spacing
|
| 936 |
-
formatted_answer = f"<div style='margin:0;padding:0;margin-top:-30px'>✨ <strong style='margin:0;padding:0'>JarvisArt Recommendations</strong><div style='margin:0;padding:0'>{current_answer}...<br/><em>Generating more suggestions...</em></div></div>"
|
| 937 |
-
if recommendations_index is not None:
|
| 938 |
-
chat_history[recommendations_index] = {
|
| 939 |
-
"role": "assistant",
|
| 940 |
-
"content": formatted_answer
|
| 941 |
-
}
|
| 942 |
-
else:
|
| 943 |
-
chat_history.append({
|
| 944 |
-
"role": "assistant",
|
| 945 |
-
"content": formatted_answer
|
| 946 |
-
})
|
| 947 |
-
recommendations_index = len(chat_history) - 1
|
| 948 |
-
yield chat_history, None
|
| 949 |
-
|
| 950 |
-
# Final completion
|
| 951 |
-
if stage == "completed":
|
| 952 |
-
# Analysis is complete, now process and save lua files
|
| 953 |
-
print(f"🔍 Debug: Final completion stage reached")
|
| 954 |
-
answer_match = re.search(r'<answer>(.*?)</answer>', full_response, re.DOTALL)
|
| 955 |
-
if answer_match:
|
| 956 |
-
answer_content = answer_match.group(1).strip()
|
| 957 |
-
print(f"🔍 Debug: Extracted answer content (first 200 chars): {answer_content[:200]}...")
|
| 958 |
-
|
| 959 |
-
# Extract JSON objects from the answer
|
| 960 |
-
json_objects = extract_json_from_answer(answer_content)
|
| 961 |
-
print(f"🔍 Debug: Found {len(json_objects)} JSON objects")
|
| 962 |
-
|
| 963 |
-
# Save JSON objects as lua files
|
| 964 |
-
if json_objects:
|
| 965 |
-
print(f"🔍 Debug: Processing {len(json_objects)} JSON objects for conversion")
|
| 966 |
-
conversion_index = None
|
| 967 |
-
chat_history.append({
|
| 968 |
-
"role": "assistant",
|
| 969 |
-
"content": "<div style='margin:0;padding:0;margin-top:-20px'>⚙️ <strong style='margin:0;padding:0'>Lightroom Configuration Converting...</strong><br/><em>Converting editing parameters to Lightroom-compatible format...</em></div>"
|
| 970 |
-
})
|
| 971 |
-
conversion_index = len(chat_history) - 1
|
| 972 |
-
yield chat_history
|
| 973 |
-
|
| 974 |
-
# Create lua_results folder in the same directory as this script
|
| 975 |
-
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 976 |
-
results_dir = os.path.join(script_dir, "results")
|
| 977 |
-
os.makedirs(results_dir, exist_ok=True)
|
| 978 |
-
|
| 979 |
-
# Generate timestamp for unique session folder name
|
| 980 |
-
timestamp = int(time.time())
|
| 981 |
-
session_folder_name = f"example_{timestamp}"
|
| 982 |
-
session_dir = os.path.join(results_dir, session_folder_name)
|
| 983 |
-
os.makedirs(session_dir, exist_ok=True)
|
| 984 |
-
|
| 985 |
-
# Copy the uploaded image to the session folder
|
| 986 |
-
import shutil
|
| 987 |
-
# Use secure_filename and hash to generate unique original image filename, avoiding conflicts with processed images
|
| 988 |
-
original_filename = secure_filename(os.path.basename(image))
|
| 989 |
-
file_hash = hashlib.md5(f"{original_filename}_{time.time()}".encode()).hexdigest()
|
| 990 |
-
|
| 991 |
-
# Keep original extension
|
| 992 |
-
file_ext = os.path.splitext(original_filename)[1] or '.jpg'
|
| 993 |
-
unique_original_filename = f"original_{file_hash}{file_ext}"
|
| 994 |
-
|
| 995 |
-
image_dest_path = os.path.join(session_dir, unique_original_filename)
|
| 996 |
-
shutil.copy2(image, image_dest_path)
|
| 997 |
-
|
| 998 |
-
# Save the full model response to a text file
|
| 999 |
-
response_file_path = os.path.join(session_dir, "full_response.txt")
|
| 1000 |
-
with open(response_file_path, "w", encoding="utf-8") as f:
|
| 1001 |
-
f.write(full_response)
|
| 1002 |
-
|
| 1003 |
-
# Save user prompt to a text file
|
| 1004 |
-
prompt_file_path = os.path.join(session_dir, "user_prompt.txt")
|
| 1005 |
-
with open(prompt_file_path, "w", encoding="utf-8") as f:
|
| 1006 |
-
f.write(user_prompt)
|
| 1007 |
-
|
| 1008 |
-
saved_files = []
|
| 1009 |
-
lrtemplate_files = []
|
| 1010 |
-
for i, json_obj in enumerate(json_objects):
|
| 1011 |
-
filename = f"config_{i+1}.lua"
|
| 1012 |
-
lua_path, error = json_to_lua(json_obj, session_dir, filename)
|
| 1013 |
-
|
| 1014 |
-
if lua_path:
|
| 1015 |
-
saved_files.append(lua_path)
|
| 1016 |
-
print(f"✅ Saved Lua config: {lua_path}")
|
| 1017 |
-
|
| 1018 |
-
# Convert lua to lrtemplate
|
| 1019 |
-
try:
|
| 1020 |
-
lrtemplate_path = lua_to_lrtemplate(lua_path)
|
| 1021 |
-
lrtemplate_files.append(lrtemplate_path)
|
| 1022 |
-
print(f"✅ Converted to Lightroom preset: {lrtemplate_path}")
|
| 1023 |
-
except Exception as e:
|
| 1024 |
-
print(f"⚠️ Failed to convert {lua_path} to lrtemplate: {str(e)}")
|
| 1025 |
-
else:
|
| 1026 |
-
print(f"❌ Failed to save Lua config {i+1}: {error}")
|
| 1027 |
-
|
| 1028 |
-
|
| 1029 |
-
# Update file save notification
|
| 1030 |
-
if saved_files:
|
| 1031 |
-
save_notification = "<div style='margin:0;padding:0;margin-top:-20px'>"
|
| 1032 |
-
save_notification += "✅ <strong style='margin:0;padding:0'>Files saved successfully!</strong><br/>"
|
| 1033 |
-
save_notification += "📁 <strong>Save location:</strong> <code>results/" + session_folder_name + "/</code><br/>"
|
| 1034 |
-
save_notification += "📄 <strong>Generated files:</strong><br/>"
|
| 1035 |
-
save_notification += " • Original image: <code>" + unique_original_filename + "</code><br/>"
|
| 1036 |
-
save_notification += " • Full response: <code>full_response.txt</code><br/>"
|
| 1037 |
-
save_notification += " • User prompt: <code>user_prompt.txt</code><br/>"
|
| 1038 |
-
save_notification += " • Config files: " + str(len(saved_files)) + " files"
|
| 1039 |
-
save_notification += "<br/> • Lightroom presets: " + str(len(lrtemplate_files)) + " files"
|
| 1040 |
-
|
| 1041 |
-
save_notification += "<br/><strong>Config files:</strong>"
|
| 1042 |
-
for i, file_path in enumerate(saved_files):
|
| 1043 |
-
filename = os.path.basename(file_path)
|
| 1044 |
-
save_notification += "<br/> • <code>" + filename + "</code>"
|
| 1045 |
-
|
| 1046 |
-
save_notification += "<br/><strong>Lightroom Presets:</strong>"
|
| 1047 |
-
for i, file_path in enumerate(lrtemplate_files):
|
| 1048 |
-
filename = os.path.basename(file_path)
|
| 1049 |
-
save_notification += "<br/> • <code>" + filename + "</code>"
|
| 1050 |
-
|
| 1051 |
-
save_notification += "<br/><br/>🎨 <strong>How to use Lightroom Presets:</strong>"
|
| 1052 |
-
save_notification += "<br/>1. Open Adobe Lightroom"
|
| 1053 |
-
save_notification += "<br/>2. Go to the <strong>Presets</strong> panel"
|
| 1054 |
-
save_notification += "<br/>3. Click on the <strong>+</strong> icon"
|
| 1055 |
-
save_notification += "<br/>4. Select <strong>Import Presets</strong>"
|
| 1056 |
-
save_notification += "<br/>5. Choose the <code>.lrtemplate</code> file(s) and click <strong>Import</strong>"
|
| 1057 |
-
save_notification += "<br/><br/>The imported presets will now be available in your Presets panel for use on your photos."
|
| 1058 |
-
save_notification += "</div>"
|
| 1059 |
-
|
| 1060 |
-
# Use the compact_text function to process text
|
| 1061 |
-
save_notification = compact_text(save_notification)
|
| 1062 |
-
|
| 1063 |
-
# Update conversion message
|
| 1064 |
-
if conversion_index is not None:
|
| 1065 |
-
chat_history[conversion_index] = {
|
| 1066 |
-
"role": "assistant",
|
| 1067 |
-
"content": save_notification
|
| 1068 |
-
}
|
| 1069 |
-
else:
|
| 1070 |
-
# Show conversion failed message
|
| 1071 |
-
if conversion_index is not None:
|
| 1072 |
-
chat_history[conversion_index] = {
|
| 1073 |
-
"role": "assistant",
|
| 1074 |
-
"content": "<div style='margin:0;padding:0;margin-top:-20px'>❌ <strong style='margin:0;padding:0'>Lightroom config conversion failed</strong><br/><em>No valid configuration data found in recommendations.</em></div>"
|
| 1075 |
-
}
|
| 1076 |
-
else:
|
| 1077 |
-
print(f"🔍 Debug: No JSON objects found, adding debug message to chat")
|
| 1078 |
-
# Add debug message to show what was found
|
| 1079 |
-
debug_msg = "<div style='margin:0;padding:0;margin-top:-20px'>"
|
| 1080 |
-
debug_msg += "🔍 <strong style='margin:0;padding:0'>Debug Information</strong><br/>"
|
| 1081 |
-
debug_msg += "<strong>Answer Content Preview:</strong><br/><pre style='margin:0;padding:4px'>" + answer_content[:500] + "...</pre><br/>"
|
| 1082 |
-
debug_msg += "<strong>Extraction Attempted:</strong> No valid JSON objects found in the recommendations."
|
| 1083 |
-
debug_msg += "</div>"
|
| 1084 |
-
|
| 1085 |
-
# Use the compact_text function to process text
|
| 1086 |
-
debug_msg = compact_text(debug_msg)
|
| 1087 |
-
|
| 1088 |
-
chat_history.append({
|
| 1089 |
-
"role": "assistant",
|
| 1090 |
-
"content": debug_msg
|
| 1091 |
-
})
|
| 1092 |
-
else:
|
| 1093 |
-
print(f"🔍 Debug: No answer match found in full_response")
|
| 1094 |
-
else:
|
| 1095 |
-
# If not ended normally, try to parse and format final response
|
| 1096 |
-
print(f"🔍 Debug: Non-normal completion, stage: {stage}")
|
| 1097 |
-
think_match = re.search(r'<think>(.*?)</think>', full_response, re.DOTALL)
|
| 1098 |
-
answer_match = re.search(r'<answer>(.*?)</answer>', full_response, re.DOTALL)
|
| 1099 |
-
|
| 1100 |
-
if think_match:
|
| 1101 |
-
thinking_content = think_match.group(1).strip()
|
| 1102 |
-
formatted_thinking = f"💭 **Thinking**\n{thinking_content}"
|
| 1103 |
-
chat_history[ai_message_index] = {
|
| 1104 |
-
"role": "assistant",
|
| 1105 |
-
"content": formatted_thinking
|
| 1106 |
-
}
|
| 1107 |
-
|
| 1108 |
-
if answer_match:
|
| 1109 |
-
answer_content = answer_match.group(1).strip()
|
| 1110 |
-
formatted_answer = f"✨ **Professional Editing Recommendations**\n{answer_content}"
|
| 1111 |
-
if recommendations_index is not None:
|
| 1112 |
-
chat_history[recommendations_index] = {
|
| 1113 |
-
"role": "assistant",
|
| 1114 |
-
"content": formatted_answer
|
| 1115 |
-
}
|
| 1116 |
-
else:
|
| 1117 |
-
chat_history.append({
|
| 1118 |
-
"role": "assistant",
|
| 1119 |
-
"content": formatted_answer
|
| 1120 |
-
})
|
| 1121 |
-
|
| 1122 |
-
# Extract and save JSON objects from answer even if not completed normally
|
| 1123 |
-
json_objects = extract_json_from_answer(answer_content)
|
| 1124 |
-
print(f"🔍 Debug: Non-normal completion found {len(json_objects)} JSON objects")
|
| 1125 |
-
|
| 1126 |
-
if json_objects:
|
| 1127 |
-
# Show Lightroom configuration conversion in progress
|
| 1128 |
-
conversion_index = None
|
| 1129 |
-
chat_history.append({
|
| 1130 |
-
"role": "assistant",
|
| 1131 |
-
"content": "<div style='margin:0;padding:0;margin-top:-20px'>⚙️ <strong style='margin:0;padding:0'>Lightroom Configuration Converting...</strong><br/><em>Converting editing parameters to Lightroom-compatible format...</em></div>"
|
| 1132 |
-
})
|
| 1133 |
-
conversion_index = len(chat_history) - 1
|
| 1134 |
-
yield chat_history, None
|
| 1135 |
-
|
| 1136 |
-
# Same processing logic... (omitting repetitive code here for brevity)
|
| 1137 |
-
# [Continue processing logic, format as above]
|
| 1138 |
-
|
| 1139 |
-
# Prepare download files if available
|
| 1140 |
-
download_file_list = []
|
| 1141 |
-
if latest_session_dir and os.path.exists(latest_session_dir):
|
| 1142 |
-
for file in os.listdir(latest_session_dir):
|
| 1143 |
-
if file.endswith('.lrtemplate'):
|
| 1144 |
-
download_file_list.append(os.path.join(latest_session_dir, file))
|
| 1145 |
-
|
| 1146 |
-
yield chat_history, download_file_list if download_file_list else None
|
| 1147 |
-
|
| 1148 |
-
except Exception as e:
|
| 1149 |
-
error_msg = f"❌ **Oops! Something went wrong**\n\n```\nError: {str(e)}\n```\n\n💡 **Try again with:**\n- A different image format\n- A simpler description\n- Refreshing the page"
|
| 1150 |
-
chat_history = [
|
| 1151 |
-
{"role": "user", "content": "Image analysis request"},
|
| 1152 |
-
{"role": "assistant", "content": error_msg}
|
| 1153 |
-
]
|
| 1154 |
-
yield chat_history, None
|
| 1155 |
|
| 1156 |
# Create Gradio interface
|
| 1157 |
def create_interface():
|
|
@@ -1334,9 +822,9 @@ def create_interface():
|
|
| 1334 |
# Event binding - simplified to match test1.py working pattern
|
| 1335 |
|
| 1336 |
input_image.change(
|
| 1337 |
-
fn=
|
| 1338 |
-
inputs=input_image,
|
| 1339 |
-
outputs=coordinates_output
|
| 1340 |
)
|
| 1341 |
# Main processing button - streaming output, pass all parameters
|
| 1342 |
process_btn.click(
|
|
|
|
| 2 |
import subprocess
|
| 3 |
import os
|
| 4 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
import re
|
| 7 |
import gradio as gr
|
|
|
|
| 18 |
from werkzeug.utils import secure_filename # Add this import
|
| 19 |
from utils.system_prompt import SHORT_SYSTEM_PROMPT_WITH_THINKING
|
| 20 |
from utils.lua_converter import LuaConverter
|
|
|
|
|
|
|
|
|
|
| 21 |
from utils.lua2lrt import lua_to_lrtemplate
|
|
|
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
def extract_json_from_answer(answer):
|
|
|
|
| 146 |
except Exception as e:
|
| 147 |
return None, f"Error in json_to_lua: {str(e)}"
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
# Local model client class
|
| 151 |
class LocalModelClient:
|
|
|
|
| 160 |
self.model = None
|
| 161 |
self.processor = None
|
| 162 |
self.model_loaded = False
|
| 163 |
+
|
|
|
|
|
|
|
| 164 |
|
| 165 |
# Load model
|
| 166 |
self._load_model()
|
| 167 |
|
| 168 |
def _load_model(self):
|
| 169 |
+
print(f"🔍 Loading model from {self.model_path}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
def chat(self, messages, system=None, images=None, **kwargs):
|
| 172 |
"""
|
|
|
|
| 233 |
formatted_messages, tokenize=False, add_generation_prompt=True
|
| 234 |
)
|
| 235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
+
output_text = "hello world" # Placeholder for actual model output
|
| 238 |
# Create Response object for compatibility
|
| 239 |
class Response:
|
| 240 |
def __init__(self, text):
|
|
|
|
| 366 |
parser.add_argument(
|
| 367 |
"--server_port",
|
| 368 |
type=int,
|
| 369 |
+
default=7861, # Change to standard Gradio port
|
| 370 |
help="Port for the Gradio server"
|
| 371 |
)
|
| 372 |
parser.add_argument(
|
| 373 |
"--server_name",
|
| 374 |
type=str,
|
| 375 |
+
default="127.0.0.1",
|
| 376 |
help="Server name/IP for the Gradio server"
|
| 377 |
)
|
| 378 |
parser.add_argument(
|
|
|
|
| 592 |
image_key = str(input_image) # Use string representation as key
|
| 593 |
|
| 594 |
last_box = annotated_image_dict["boxes"][-1]
|
| 595 |
+
width, height = pil_image.shape[:2]
|
| 596 |
|
| 597 |
xmin = last_box["xmin"] / width
|
| 598 |
ymin = last_box["ymin"] / height
|
|
|
|
| 601 |
|
| 602 |
local_dict[image_key] = [xmin, ymin, xmax, ymax]
|
| 603 |
# Format the coordinates into a string
|
| 604 |
+
print( str([xmin, ymin, xmax, ymax]))
|
| 605 |
return str([xmin, ymin, xmax, ymax]), f"In the region <box>{str([xmin, ymin, xmax, ymax])}</box>, {prompt_original}"
|
| 606 |
return "No box drawn", prompt_original
|
| 607 |
|
|
|
|
| 625 |
image_key = str(input_image) # Use string representation as key
|
| 626 |
|
| 627 |
last_box = annotated_image_dict["boxes"][-1]
|
| 628 |
+
height, width = pil_image.shape[:2]
|
| 629 |
|
| 630 |
xmin = last_box["xmin"] / width
|
| 631 |
ymin = last_box["ymin"] / height
|
|
|
|
| 634 |
|
| 635 |
local_dict[image_key] = [xmin, ymin, xmax, ymax]
|
| 636 |
# Format the coordinates into a string
|
| 637 |
+
print(str([xmin, ymin, xmax, ymax]))
|
| 638 |
return str([xmin, ymin, xmax, ymax])
|
| 639 |
return "No bounding box drawn yet."
|
| 640 |
|
|
|
|
| 641 |
def process_analysis_pipeline_stream(image_dict, user_prompt, max_new_tokens, top_k, top_p, temperature):
|
| 642 |
+
print("🔍 Processing analysis pipeline with streaming output...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 643 |
|
| 644 |
# Create Gradio interface
|
| 645 |
def create_interface():
|
|
|
|
| 822 |
# Event binding - simplified to match test1.py working pattern
|
| 823 |
|
| 824 |
input_image.change(
|
| 825 |
+
fn=get_box_coordinates,
|
| 826 |
+
inputs=[input_image, user_prompt],
|
| 827 |
+
outputs=[coordinates_output, user_prompt]
|
| 828 |
)
|
| 829 |
# Main processing button - streaming output, pass all parameters
|
| 830 |
process_btn.click(
|