QueryYourDocs / app.py
LVKinyanjui's picture
Updated requirements and hf model
c336e96
raw
history blame
1.49 kB
import streamlit as st
import pymupdf
import chromadb
from uuid import uuid4
@st.cache_resource
def initdb():
chroma_client = chromadb.Client()
collection = chroma_client.get_or_create_collection(name="rag_collection")
return collection
st.write("## Local RAG \n Get Insights from your documents")
file = st.file_uploader("Upload your Document Here to Query", type=['pdf'])
if file is not None:
# Read file as bytes and save it.
# PyMuPDF open can only load from file path
bytes_data = file.getvalue()
with open("data/uploaded_file.pdf", "wb") as fp:
fp.write(bytes_data)
doc = pymupdf.open(fp)
texts = [str(page.get_text().encode("utf-8")) for page in doc]
# VECTOR STORE
collection = initdb()
text_ids = [str(uuid4()) for text in texts]
collection.add(documents=texts, ids=text_ids)
st.write("Succesfully uploaded document to database.")
# QUERY AREA
query = st.text_input(
"Enter your query",
# disabled=st.session_state.disabled,
)
if query != "":
query_results = collection.query(
query_texts=[query, ],
n_results=5,
include=["documents", ]
)
st.write("Database Query Matches")
query_results
# query_text = [" ".join([str(element) for element in inner_list])
# for inner_list in query_results["documents"]][0]
# st.write("Database Query Matches")
# st.markdown(query_text)