Spaces:
Sleeping
Sleeping
LVKinyanjui
commited on
Commit
·
e35ef75
1
Parent(s):
5e068a9
Renamed the right main app file
Browse files- app.py +75 -19
- st_image_chat.py +0 -93
- st_long_context_basic.py +37 -0
app.py
CHANGED
@@ -1,37 +1,93 @@
|
|
1 |
-
# CREDITS
|
2 |
-
# https://gist.github.com/truevis/f31706b8af60e8c73d62b281bddb988f
|
3 |
-
|
4 |
import streamlit as st
|
5 |
from groq import Groq
|
6 |
-
|
7 |
import os
|
|
|
|
|
|
|
|
|
8 |
client = Groq(
|
9 |
api_key=os.environ.get("GROQ_API_KEY"),
|
10 |
)
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
stream = client.chat.completions.create(
|
14 |
-
model=
|
15 |
-
messages=
|
16 |
-
{"role": "system", "content": "You are a helpful assistant"},
|
17 |
-
{"role": "user", "content": user_input},
|
18 |
-
],
|
19 |
temperature=0.1,
|
20 |
-
# max_tokens=128000,
|
21 |
top_p=1,
|
22 |
stream=True,
|
23 |
stop=None,
|
24 |
)
|
25 |
-
|
26 |
for chunk in stream:
|
27 |
content = chunk.choices[0].delta.content
|
28 |
if content:
|
29 |
-
yield content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
user_input = st.chat_input('Message to Assistant...', key='prompt_input')
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from groq import Groq
|
|
|
3 |
import os
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
# Initialize Groq client
|
8 |
client = Groq(
|
9 |
api_key=os.environ.get("GROQ_API_KEY"),
|
10 |
)
|
11 |
|
12 |
+
# Initialize session state for chat history if it doesn't exist
|
13 |
+
if 'messages' not in st.session_state:
|
14 |
+
st.session_state.messages = []
|
15 |
+
|
16 |
+
def encode_image(uploaded_file):
|
17 |
+
bytes_data = uploaded_file.getvalue()
|
18 |
+
base64_image = base64.b64encode(bytes_data).decode('utf-8')
|
19 |
+
return f"data:image/{uploaded_file.type.split('/')[-1]};base64,{base64_image}"
|
20 |
+
|
21 |
+
def generate_response(messages, current_image=None):
|
22 |
+
# Create a copy of messages for the API call
|
23 |
+
api_messages = messages.copy()
|
24 |
+
|
25 |
+
# If there's a current image, add it to the last user message
|
26 |
+
if current_image:
|
27 |
+
api_messages[-1] = {
|
28 |
+
"role": "user",
|
29 |
+
"content": [
|
30 |
+
{"type": "text", "text": api_messages[-1]["content"]},
|
31 |
+
{
|
32 |
+
"type": "image_url",
|
33 |
+
"image_url": {"url": current_image}
|
34 |
+
}
|
35 |
+
]
|
36 |
+
}
|
37 |
+
|
38 |
+
model = "llama-3.2-11b-vision-preview" if current_image else "llama-3.2-3b-preview"
|
39 |
+
|
40 |
stream = client.chat.completions.create(
|
41 |
+
model=model,
|
42 |
+
messages=api_messages,
|
|
|
|
|
|
|
43 |
temperature=0.1,
|
|
|
44 |
top_p=1,
|
45 |
stream=True,
|
46 |
stop=None,
|
47 |
)
|
48 |
+
|
49 |
for chunk in stream:
|
50 |
content = chunk.choices[0].delta.content
|
51 |
if content:
|
52 |
+
yield content
|
53 |
+
|
54 |
+
st.title("Groq Chat")
|
55 |
+
|
56 |
+
# Display chat history
|
57 |
+
for message in st.session_state.messages:
|
58 |
+
with st.chat_message(message["role"]):
|
59 |
+
st.markdown(message["content"])
|
60 |
|
61 |
+
# File uploader for images
|
62 |
+
uploaded_file = st.file_uploader("Upload an image (optional)", type=['png', 'jpg', 'jpeg'])
|
63 |
+
|
64 |
+
# Get user input
|
65 |
user_input = st.chat_input('Message to Assistant...', key='prompt_input')
|
66 |
+
|
67 |
+
if user_input:
|
68 |
+
# Add user message to chat history (text only)
|
69 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
70 |
+
|
71 |
+
# Display user message with image if present
|
72 |
+
with st.chat_message("user"):
|
73 |
+
st.markdown(user_input)
|
74 |
+
if uploaded_file:
|
75 |
+
st.image(uploaded_file)
|
76 |
+
|
77 |
+
# Generate and display assistant response
|
78 |
+
with st.chat_message("assistant"):
|
79 |
+
response_placeholder = st.empty()
|
80 |
+
full_response = ""
|
81 |
+
|
82 |
+
# Prepare image for API call if present
|
83 |
+
current_image = encode_image(uploaded_file) if uploaded_file else None
|
84 |
+
|
85 |
+
# Stream the response
|
86 |
+
with st.spinner("Generating response..."):
|
87 |
+
for content in generate_response(st.session_state.messages, current_image):
|
88 |
+
full_response += content
|
89 |
+
response_placeholder.markdown(full_response + "▌")
|
90 |
+
response_placeholder.markdown(full_response)
|
91 |
+
|
92 |
+
# Add assistant response to chat history (text only)
|
93 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
st_image_chat.py
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from groq import Groq
|
3 |
-
import os
|
4 |
-
import base64
|
5 |
-
from io import BytesIO
|
6 |
-
|
7 |
-
# Initialize Groq client
|
8 |
-
client = Groq(
|
9 |
-
api_key=os.environ.get("GROQ_API_KEY"),
|
10 |
-
)
|
11 |
-
|
12 |
-
# Initialize session state for chat history if it doesn't exist
|
13 |
-
if 'messages' not in st.session_state:
|
14 |
-
st.session_state.messages = []
|
15 |
-
|
16 |
-
def encode_image(uploaded_file):
|
17 |
-
bytes_data = uploaded_file.getvalue()
|
18 |
-
base64_image = base64.b64encode(bytes_data).decode('utf-8')
|
19 |
-
return f"data:image/{uploaded_file.type.split('/')[-1]};base64,{base64_image}"
|
20 |
-
|
21 |
-
def generate_response(messages, current_image=None):
|
22 |
-
# Create a copy of messages for the API call
|
23 |
-
api_messages = messages.copy()
|
24 |
-
|
25 |
-
# If there's a current image, add it to the last user message
|
26 |
-
if current_image:
|
27 |
-
api_messages[-1] = {
|
28 |
-
"role": "user",
|
29 |
-
"content": [
|
30 |
-
{"type": "text", "text": api_messages[-1]["content"]},
|
31 |
-
{
|
32 |
-
"type": "image_url",
|
33 |
-
"image_url": {"url": current_image}
|
34 |
-
}
|
35 |
-
]
|
36 |
-
}
|
37 |
-
|
38 |
-
model = "llama-3.2-11b-vision-preview" if current_image else "llama-3.2-3b-preview"
|
39 |
-
|
40 |
-
stream = client.chat.completions.create(
|
41 |
-
model=model,
|
42 |
-
messages=api_messages,
|
43 |
-
temperature=0.1,
|
44 |
-
top_p=1,
|
45 |
-
stream=True,
|
46 |
-
stop=None,
|
47 |
-
)
|
48 |
-
|
49 |
-
for chunk in stream:
|
50 |
-
content = chunk.choices[0].delta.content
|
51 |
-
if content:
|
52 |
-
yield content
|
53 |
-
|
54 |
-
st.title("Groq Chat")
|
55 |
-
|
56 |
-
# Display chat history
|
57 |
-
for message in st.session_state.messages:
|
58 |
-
with st.chat_message(message["role"]):
|
59 |
-
st.markdown(message["content"])
|
60 |
-
|
61 |
-
# File uploader for images
|
62 |
-
uploaded_file = st.file_uploader("Upload an image (optional)", type=['png', 'jpg', 'jpeg'])
|
63 |
-
|
64 |
-
# Get user input
|
65 |
-
user_input = st.chat_input('Message to Assistant...', key='prompt_input')
|
66 |
-
|
67 |
-
if user_input:
|
68 |
-
# Add user message to chat history (text only)
|
69 |
-
st.session_state.messages.append({"role": "user", "content": user_input})
|
70 |
-
|
71 |
-
# Display user message with image if present
|
72 |
-
with st.chat_message("user"):
|
73 |
-
st.markdown(user_input)
|
74 |
-
if uploaded_file:
|
75 |
-
st.image(uploaded_file)
|
76 |
-
|
77 |
-
# Generate and display assistant response
|
78 |
-
with st.chat_message("assistant"):
|
79 |
-
response_placeholder = st.empty()
|
80 |
-
full_response = ""
|
81 |
-
|
82 |
-
# Prepare image for API call if present
|
83 |
-
current_image = encode_image(uploaded_file) if uploaded_file else None
|
84 |
-
|
85 |
-
# Stream the response
|
86 |
-
with st.spinner("Generating response..."):
|
87 |
-
for content in generate_response(st.session_state.messages, current_image):
|
88 |
-
full_response += content
|
89 |
-
response_placeholder.markdown(full_response + "▌")
|
90 |
-
response_placeholder.markdown(full_response)
|
91 |
-
|
92 |
-
# Add assistant response to chat history (text only)
|
93 |
-
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st_long_context_basic.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CREDITS
|
2 |
+
# https://gist.github.com/truevis/f31706b8af60e8c73d62b281bddb988f
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
from groq import Groq
|
6 |
+
|
7 |
+
import os
|
8 |
+
client = Groq(
|
9 |
+
api_key=os.environ.get("GROQ_API_KEY"),
|
10 |
+
)
|
11 |
+
|
12 |
+
def generate_response(user_input):
|
13 |
+
stream = client.chat.completions.create(
|
14 |
+
model="llama-3.2-3b-preview", #128K model
|
15 |
+
messages=[
|
16 |
+
{"role": "system", "content": "You are a helpful assistant"},
|
17 |
+
{"role": "user", "content": user_input},
|
18 |
+
],
|
19 |
+
temperature=0.1,
|
20 |
+
# max_tokens=128000,
|
21 |
+
top_p=1,
|
22 |
+
stream=True,
|
23 |
+
stop=None,
|
24 |
+
)
|
25 |
+
|
26 |
+
for chunk in stream:
|
27 |
+
content = chunk.choices[0].delta.content
|
28 |
+
if content:
|
29 |
+
yield content # Yield content for streaming
|
30 |
+
|
31 |
+
st.title("Groq API Response Streaming")
|
32 |
+
user_input = st.chat_input('Message to Assistant...', key='prompt_input')
|
33 |
+
if user_input: # Get user input
|
34 |
+
with st.spinner("Generating response..."):
|
35 |
+
st.write_stream(generate_response(user_input)) # Use st.write_stream to display streamed content
|
36 |
+
st.markdown("Message: " + user_input)
|
37 |
+
st.markdown("---") # Add a newline after the
|