|
import os |
|
import random |
|
import sys |
|
from typing import Sequence, Mapping, Any, Union |
|
import torch |
|
from PIL import Image |
|
from huggingface_hub import hf_hub_download |
|
import spaces |
|
|
|
import subprocess, sys |
|
|
|
|
|
|
|
|
|
import gradio_client.utils as _gc_utils |
|
|
|
|
|
_orig_js2pt = _gc_utils._json_schema_to_python_type |
|
_orig_get_type = _gc_utils.get_type |
|
|
|
def _safe_json_schema_to_python_type(schema, defs=None): |
|
""" |
|
Если schema — bool (True/False), возвращаем 'Any', |
|
иначе — вызываем оригинальный код. |
|
""" |
|
if isinstance(schema, bool): |
|
return "Any" |
|
return _orig_js2pt(schema, defs) |
|
|
|
def _safe_get_type(schema): |
|
""" |
|
Если schema — bool, возвращаем 'Any', |
|
иначе — вызываем оригинальную функцию get_type. |
|
""" |
|
if isinstance(schema, bool): |
|
return "Any" |
|
return _orig_get_type(schema) |
|
|
|
|
|
_gc_utils._json_schema_to_python_type = _safe_json_schema_to_python_type |
|
_gc_utils.get_type = _safe_get_type |
|
|
|
|
|
|
|
|
|
import gradio |
|
import gradio_client |
|
import gradio as gr |
|
|
|
print("gradio version:", gradio.__version__) |
|
print("gradio_client version:", gradio_client.__version__) |
|
|
|
hf_hub_download(repo_id="ezioruan/inswapper_128.onnx", filename="inswapper_128.onnx", local_dir="models/insightface") |
|
hf_hub_download(repo_id="martintomov/comfy", filename="facerestore_models/GPEN-BFR-512.onnx", local_dir="models/facerestore_models") |
|
|
|
hf_hub_download(repo_id="darkeril/collection", filename="detection_Resnet50_Final.pth", local_dir="models/facedetection") |
|
hf_hub_download(repo_id="gmk123/GFPGAN", filename="parsing_parsenet.pth", local_dir="models/facedetection") |
|
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="1k3d68.onnx", local_dir="models/insightface/models/buffalo_l") |
|
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="2d106det.onnx", local_dir="models/insightface/models/buffalo_l") |
|
hf_hub_download(repo_id="maze/faceX", filename="det_10g.onnx", local_dir="models/insightface/models/buffalo_l") |
|
hf_hub_download(repo_id="typhoon01/aux_models", filename="genderage.onnx", local_dir="models/insightface/models/buffalo_l") |
|
hf_hub_download(repo_id="maze/faceX", filename="w600k_r50.onnx", local_dir="models/insightface/models/buffalo_l") |
|
|
|
|
|
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: |
|
"""Returns the value at the given index of a sequence or mapping. |
|
|
|
If the object is a sequence (like list or string), returns the value at the given index. |
|
If the object is a mapping (like a dictionary), returns the value at the index-th key. |
|
|
|
Some return a dictionary, in these cases, we look for the "results" key |
|
|
|
Args: |
|
obj (Union[Sequence, Mapping]): The object to retrieve the value from. |
|
index (int): The index of the value to retrieve. |
|
|
|
Returns: |
|
Any: The value at the given index. |
|
|
|
Raises: |
|
IndexError: If the index is out of bounds for the object and the object is not a mapping. |
|
""" |
|
try: |
|
return obj[index] |
|
except KeyError: |
|
return obj["result"][index] |
|
|
|
|
|
def find_path(name: str, path: str = None) -> str: |
|
""" |
|
Recursively looks at parent folders starting from the given path until it finds the given name. |
|
Returns the path as a Path object if found, or None otherwise. |
|
""" |
|
|
|
if path is None: |
|
path = os.getcwd() |
|
|
|
|
|
if name in os.listdir(path): |
|
path_name = os.path.join(path, name) |
|
print(f"{name} found: {path_name}") |
|
return path_name |
|
|
|
|
|
parent_directory = os.path.dirname(path) |
|
|
|
|
|
if parent_directory == path: |
|
return None |
|
|
|
|
|
return find_path(name, parent_directory) |
|
|
|
|
|
def add_comfyui_directory_to_sys_path() -> None: |
|
""" |
|
Add 'ComfyUI' to the sys.path |
|
""" |
|
comfyui_path = find_path("ComfyUI") |
|
if comfyui_path is not None and os.path.isdir(comfyui_path): |
|
sys.path.append(comfyui_path) |
|
print(f"'{comfyui_path}' added to sys.path") |
|
|
|
|
|
def add_extra_model_paths() -> None: |
|
""" |
|
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. |
|
""" |
|
try: |
|
from main import load_extra_path_config |
|
except ImportError: |
|
print( |
|
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." |
|
) |
|
from utils.extra_config import load_extra_path_config |
|
|
|
extra_model_paths = find_path("extra_model_paths.yaml") |
|
|
|
if extra_model_paths is not None: |
|
load_extra_path_config(extra_model_paths) |
|
else: |
|
print("Could not find the extra_model_paths config file.") |
|
|
|
|
|
add_comfyui_directory_to_sys_path() |
|
add_extra_model_paths() |
|
|
|
|
|
def import_custom_nodes() -> None: |
|
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS |
|
|
|
This function sets up a new asyncio event loop, initializes the PromptServer, |
|
creates a PromptQueue, and initializes the custom nodes. |
|
""" |
|
import asyncio |
|
import execution |
|
from nodes import init_extra_nodes |
|
import server |
|
|
|
|
|
loop = asyncio.new_event_loop() |
|
asyncio.set_event_loop(loop) |
|
|
|
|
|
server_instance = server.PromptServer(loop) |
|
execution.PromptQueue(server_instance) |
|
|
|
|
|
init_extra_nodes() |
|
|
|
import_custom_nodes() |
|
from nodes import NODE_CLASS_MAPPINGS |
|
|
|
@spaces.GPU(duration=20) |
|
def generate_image(source_image, target_image, restore_strength, target_index): |
|
with torch.inference_mode(): |
|
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() |
|
loadimage_1 = loadimage.load_image(image=target_image) |
|
|
|
loadimage_3 = loadimage.load_image(image=source_image) |
|
|
|
reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]() |
|
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() |
|
|
|
reactorfaceswap_2 = reactorfaceswap.execute( |
|
enabled=True, |
|
swap_model="inswapper_128.onnx", |
|
facedetection="retinaface_resnet50", |
|
face_restore_model="GPEN-BFR-512.onnx", |
|
face_restore_visibility=restore_strength, |
|
codeformer_weight=0.5, |
|
detect_gender_input="no", |
|
detect_gender_source="no", |
|
input_faces_index=str(target_index), |
|
source_faces_index="0", |
|
console_log_level=1, |
|
input_image=get_value_at_index(loadimage_1, 0), |
|
source_image=get_value_at_index(loadimage_3, 0), |
|
) |
|
|
|
saveimage_4 = saveimage.save_images( |
|
filename_prefix="ComfyUI", |
|
images=get_value_at_index(reactorfaceswap_2, 0), |
|
) |
|
|
|
saved_path = f"output/{saveimage_4['ui']['images'][0]['filename']}" |
|
return saved_path |
|
|
|
if __name__ == "__main__": |
|
with gr.Blocks() as app: |
|
|
|
gr.Markdown("# ComfyUI Reactor Fast Face Swap") |
|
gr.Markdown("ComfyUI Reactor Fast Face Swap running directly on Gradio. - [How to convert your any ComfyUI workflow to Gradio](https://huggingface.co/blog/run-comfyui-workflows-on-spaces)") |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
|
|
|
|
with gr.Row(): |
|
|
|
with gr.Group(): |
|
source_image = gr.Image(label="Source Image", type="filepath") |
|
|
|
|
|
with gr.Group(): |
|
target_image = gr.Image(label="Target Image", type="filepath") |
|
restore_strength = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.7, label="Face Restore Strength") |
|
target_index = gr.Dropdown(choices=[0, 1, 2, 3, 4], value=0, label="Target Face Index") |
|
gr.Markdown("Index_0 = Largest Face. To switch for another target face - switch to Index_1, e.t.c") |
|
|
|
|
|
generate_btn = gr.Button("Generate") |
|
|
|
with gr.Column(): |
|
|
|
output_image = gr.Image(label="Generated Image") |
|
|
|
|
|
|
|
generate_btn.click( |
|
fn=generate_image, |
|
inputs=[source_image, target_image, restore_strength, target_index], |
|
outputs=[output_image] |
|
) |
|
app.launch(share=True) |