|
import gradio as gr |
|
import os |
|
import json |
|
import requests |
|
|
|
|
|
API_URL = "https://api.openai.com/v1/chat/completions" |
|
|
|
|
|
|
|
|
|
def predict(inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[], history=[]): |
|
|
|
payload = { |
|
"model": "gpt-4", |
|
"messages": [{"role": "user", "content": f"{inputs}"}], |
|
"temperature" : 1.0, |
|
"top_p":1.0, |
|
"n" : 1, |
|
"stream": True, |
|
"presence_penalty":0, |
|
"frequency_penalty":0, |
|
} |
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {openai_api_key}" |
|
} |
|
|
|
print(f"chat_counter - {chat_counter}") |
|
if chat_counter != 0 : |
|
messages=[] |
|
for data in chatbot: |
|
temp1 = {} |
|
temp1["role"] = "user" |
|
temp1["content"] = data[0] |
|
temp2 = {} |
|
temp2["role"] = "assistant" |
|
temp2["content"] = data[1] |
|
messages.append(temp1) |
|
messages.append(temp2) |
|
temp3 = {} |
|
temp3["role"] = "user" |
|
temp3["content"] = inputs |
|
messages.append(temp3) |
|
|
|
payload = { |
|
"model": "gpt-4", |
|
"messages": messages, |
|
"temperature" : temperature, |
|
"top_p": top_p, |
|
"n" : 1, |
|
"stream": True, |
|
"presence_penalty":0, |
|
"frequency_penalty":0, |
|
} |
|
|
|
chat_counter+=1 |
|
|
|
history.append(inputs) |
|
print(f"payload is - {payload}") |
|
|
|
response = requests.post(API_URL, headers=headers, json=payload, stream=True) |
|
|
|
token_counter = 0 |
|
partial_words = "" |
|
|
|
counter=0 |
|
for chunk in response.iter_lines(): |
|
|
|
if counter == 0: |
|
counter+=1 |
|
continue |
|
|
|
|
|
if chunk.decode() : |
|
chunk = chunk.decode() |
|
|
|
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']: |
|
|
|
|
|
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"] |
|
if token_counter == 0: |
|
history.append(" " + partial_words) |
|
else: |
|
history[-1] = partial_words |
|
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] |
|
token_counter+=1 |
|
yield chat, history, chat_counter |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value='') |
|
|
|
title = """<h1 align="center">🔥GPT4 with ChatCompletions API +🚀Gradio-Streaming</h1>""" |
|
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: |
|
``` |
|
User: <utterance> |
|
Assistant: <utterance> |
|
User: <utterance> |
|
Assistant: <utterance> |
|
... |
|
``` |
|
In this app, you can explore the outputs of a gpt-4 LLM. |
|
""" |
|
|
|
theme = gr.themes.Default(primary_hue="green") |
|
|
|
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} |
|
#chatbot {height: 520px; overflow: auto;}""", |
|
theme=theme) as demo: |
|
gr.HTML(title) |
|
gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPT4?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''') |
|
with gr.Column(elem_id = "col_container"): |
|
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here") |
|
chatbot = gr.Chatbot(elem_id='chatbot') |
|
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") |
|
state = gr.State([]) |
|
b1 = gr.Button() |
|
|
|
|
|
with gr.Accordion("Parameters", open=False): |
|
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) |
|
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) |
|
|
|
|
|
chat_counter = gr.Number(value=0, visible=False, precision=0) |
|
|
|
inputs.submit( predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],) |
|
b1.click( predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],) |
|
b1.click(reset_textbox, [], [inputs]) |
|
inputs.submit(reset_textbox, [], [inputs]) |
|
|
|
|
|
demo.queue().launch(debug=True) |
|
|