PRM / src /model_mesh.py
JiantaoLin
new
2fe3da0
raw
history blame
33.2 kB
import os
import time
import numpy as np
import torch
import torch.nn.functional as F
import gc
from torchvision.transforms import v2
from torchvision.utils import make_grid, save_image
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
import pytorch_lightning as pl
from einops import rearrange, repeat
from src.utils.camera_util import FOV_to_intrinsics
from src.utils.material import Material
from src.utils.train_util import instantiate_from_config
import nvdiffrast.torch as dr
from src.utils import render
from src.utils.mesh import Mesh, compute_tangents
os.environ['PYOPENGL_PLATFORM'] = 'egl'
# from pytorch3d.transforms import quaternion_to_matrix, euler_angles_to_matrix
GLCTX = [None] * torch.cuda.device_count()
def initialize_extension(gpu_id):
global GLCTX
if GLCTX[gpu_id] is None:
print(f"Initializing extension module renderutils_plugin on GPU {gpu_id}...")
torch.cuda.set_device(gpu_id)
GLCTX[gpu_id] = dr.RasterizeCudaContext()
return GLCTX[gpu_id]
# Regulrarization loss for FlexiCubes
def sdf_reg_loss_batch(sdf, all_edges):
sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2)
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \
F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float())
return sdf_diff
def rotate_x(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[1, 0, 0, 0],
[0, c,-s, 0],
[0, s, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def convert_to_white_bg(image, write_bg=True):
alpha = image[:, :, 3:]
if write_bg:
return image[:, :, :3] * alpha + 1. * (1 - alpha)
else:
return image[:, :, :3] * alpha
class MVRecon(pl.LightningModule):
def __init__(
self,
lrm_generator_config,
input_size=256,
render_size=512,
init_ckpt=None,
use_tv_loss=True,
mesh_save_root="Objaverse_highQuality",
sample_points=None,
use_gt_albedo=False,
):
super(MVRecon, self).__init__()
self.use_gt_albedo = use_gt_albedo
self.use_tv_loss = use_tv_loss
self.input_size = input_size
self.render_size = render_size
self.mesh_save_root = mesh_save_root
self.sample_points = sample_points
self.lrm_generator = instantiate_from_config(lrm_generator_config)
self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg')
if init_ckpt is not None:
sd = torch.load(init_ckpt, map_location='cpu')['state_dict']
sd = {k: v for k, v in sd.items() if k.startswith('lrm_generator')}
sd_fc = {}
for k, v in sd.items():
if k.startswith('lrm_generator.synthesizer.decoder.net.'):
if k.startswith('lrm_generator.synthesizer.decoder.net.6.'): # last layer
# Here we assume the density filed's isosurface threshold is t,
# we reverse the sign of density filed to initialize SDF field.
# -(w*x + b - t) = (-w)*x + (t - b)
if 'weight' in k:
sd_fc[k.replace('net.', 'net_sdf.')] = -v[0:1]
else:
sd_fc[k.replace('net.', 'net_sdf.')] = 10.0 - v[0:1]
sd_fc[k.replace('net.', 'net_rgb.')] = v[1:4]
else:
sd_fc[k.replace('net.', 'net_sdf.')] = v
sd_fc[k.replace('net.', 'net_rgb.')] = v
else:
sd_fc[k] = v
sd_fc = {k.replace('lrm_generator.', ''): v for k, v in sd_fc.items()}
# missing `net_deformation` and `net_weight` parameters
self.lrm_generator.load_state_dict(sd_fc, strict=False)
print(f'Loaded weights from {init_ckpt}')
self.validation_step_outputs = []
def on_fit_start(self):
device = torch.device(f'cuda:{self.local_rank}')
self.lrm_generator.init_flexicubes_geometry(device)
if self.global_rank == 0:
os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True)
os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True)
def collate_fn(self, batch):
gpu_id = torch.cuda.current_device() # 获取当前线程的 GPU ID
glctx = initialize_extension(gpu_id)
batch_size = len(batch)
input_view_num = batch[0]["input_view_num"]
target_view_num = batch[0]["target_view_num"]
iter_res = [512, 512]
iter_spp = 1
layers = 1
# Initialize lists for input and target data
input_images, input_alphas, input_depths, input_normals, input_albedos = [], [], [], [], []
input_spec_light, input_diff_light, input_spec_albedo,input_diff_albedo = [], [], [], []
input_w2cs, input_Ks, input_camera_pos, input_c2ws = [], [], [], []
input_env, input_materials = [], []
input_camera_embeddings = [] # camera_embedding_list
target_images, target_alphas, target_depths, target_normals, target_albedos = [], [], [], [], []
target_spec_light, target_diff_light, target_spec_albedo, target_diff_albedo = [], [], [], []
target_w2cs, target_Ks, target_camera_pos = [], [], []
target_env, target_materials = [], []
for sample in batch:
obj_path = sample['obj_path']
with torch.no_grad():
mesh_attributes = sample['mesh_attributes']
v_pos = mesh_attributes["v_pos"].to(self.device)
v_nrm = mesh_attributes["v_nrm"].to(self.device)
v_tex = mesh_attributes["v_tex"].to(self.device)
v_tng = mesh_attributes["v_tng"].to(self.device)
t_pos_idx = mesh_attributes["t_pos_idx"].to(self.device)
t_nrm_idx = mesh_attributes["t_nrm_idx"].to(self.device)
t_tex_idx = mesh_attributes["t_tex_idx"].to(self.device)
t_tng_idx = mesh_attributes["t_tng_idx"].to(self.device)
material = Material(mesh_attributes["mat_dict"])
material = material.to(self.device)
ref_mesh = Mesh(v_pos=v_pos, v_nrm=v_nrm, v_tex=v_tex, v_tng=v_tng,
t_pos_idx=t_pos_idx, t_nrm_idx=t_nrm_idx,
t_tex_idx=t_tex_idx, t_tng_idx=t_tng_idx, material=material)
pose_list_sample = sample['pose_list'] # mvp
camera_pos_sample = sample['camera_pos'] # campos, mv.inverse
c2w_list_sample = sample['c2w_list'] # mv
env_list_sample = sample['env_list']
material_list_sample = sample['material_list']
camera_embeddings = sample["camera_embedding_list"]
fov_deg = sample['fov_deg']
raduis = sample['raduis']
# print(f"fov_deg:{fov_deg}, raduis:{raduis}")
sample_input_images, sample_input_alphas, sample_input_depths, sample_input_normals, sample_input_albedos = [], [], [], [], []
sample_input_w2cs, sample_input_Ks, sample_input_camera_pos, sample_input_c2ws = [], [], [], []
sample_input_camera_embeddings = []
sample_input_spec_light, sample_input_diff_light = [], []
sample_target_images, sample_target_alphas, sample_target_depths, sample_target_normals, sample_target_albedos = [], [], [], [], []
sample_target_w2cs, sample_target_Ks, sample_target_camera_pos = [], [], []
sample_target_spec_light, sample_target_diff_light = [], []
sample_input_env = []
sample_input_materials = []
sample_target_env = []
sample_target_materials = []
for i in range(len(pose_list_sample)):
mvp = pose_list_sample[i]
campos = camera_pos_sample[i]
env = env_list_sample[i]
materials = material_list_sample[i]
camera_embedding = camera_embeddings[i]
with torch.no_grad():
buffer_dict = render.render_mesh(glctx, ref_mesh, mvp.to(self.device), campos.to(self.device), [env], None, None,
materials, iter_res, spp=iter_spp, num_layers=layers, msaa=True,
background=None, gt_render=True)
image = convert_to_white_bg(buffer_dict['shaded'][0])
albedo = convert_to_white_bg(buffer_dict['albedo'][0]).clamp(0., 1.)
alpha = buffer_dict['mask'][0][:, :, 3:]
depth = convert_to_white_bg(buffer_dict['depth'][0])
normal = convert_to_white_bg(buffer_dict['gb_normal'][0], write_bg=False)
spec_light = convert_to_white_bg(buffer_dict['spec_light'][0])
diff_light = convert_to_white_bg(buffer_dict['diff_light'][0])
if i < input_view_num:
sample_input_images.append(image)
sample_input_albedos.append(albedo)
sample_input_alphas.append(alpha)
sample_input_depths.append(depth)
sample_input_normals.append(normal)
sample_input_spec_light.append(spec_light)
sample_input_diff_light.append(diff_light)
sample_input_w2cs.append(mvp)
sample_input_camera_pos.append(campos)
sample_input_c2ws.append(c2w_list_sample[i])
sample_input_Ks.append(FOV_to_intrinsics(fov_deg))
sample_input_env.append(env)
sample_input_materials.append(materials)
sample_input_camera_embeddings.append(camera_embedding)
else:
sample_target_images.append(image)
sample_target_albedos.append(albedo)
sample_target_alphas.append(alpha)
sample_target_depths.append(depth)
sample_target_normals.append(normal)
sample_target_spec_light.append(spec_light)
sample_target_diff_light.append(diff_light)
sample_target_w2cs.append(mvp)
sample_target_camera_pos.append(campos)
sample_target_Ks.append(FOV_to_intrinsics(fov_deg))
sample_target_env.append(env)
sample_target_materials.append(materials)
input_images.append(torch.stack(sample_input_images, dim=0).permute(0, 3, 1, 2))
input_albedos.append(torch.stack(sample_input_albedos, dim=0).permute(0, 3, 1, 2))
input_alphas.append(torch.stack(sample_input_alphas, dim=0).permute(0, 3, 1, 2))
input_depths.append(torch.stack(sample_input_depths, dim=0).permute(0, 3, 1, 2))
input_normals.append(torch.stack(sample_input_normals, dim=0).permute(0, 3, 1, 2))
input_spec_light.append(torch.stack(sample_input_spec_light, dim=0).permute(0, 3, 1, 2))
input_diff_light.append(torch.stack(sample_input_diff_light, dim=0).permute(0, 3, 1, 2))
input_w2cs.append(torch.stack(sample_input_w2cs, dim=0))
input_camera_pos.append(torch.stack(sample_input_camera_pos, dim=0))
input_c2ws.append(torch.stack(sample_input_c2ws, dim=0))
input_camera_embeddings.append(torch.stack(sample_input_camera_embeddings, dim=0))
input_Ks.append(torch.stack(sample_input_Ks, dim=0))
input_env.append(sample_input_env)
input_materials.append(sample_input_materials)
target_images.append(torch.stack(sample_target_images, dim=0).permute(0, 3, 1, 2))
target_albedos.append(torch.stack(sample_target_albedos, dim=0).permute(0, 3, 1, 2))
target_alphas.append(torch.stack(sample_target_alphas, dim=0).permute(0, 3, 1, 2))
target_depths.append(torch.stack(sample_target_depths, dim=0).permute(0, 3, 1, 2))
target_normals.append(torch.stack(sample_target_normals, dim=0).permute(0, 3, 1, 2))
target_spec_light.append(torch.stack(sample_target_spec_light, dim=0).permute(0, 3, 1, 2))
target_diff_light.append(torch.stack(sample_target_diff_light, dim=0).permute(0, 3, 1, 2))
target_w2cs.append(torch.stack(sample_target_w2cs, dim=0))
target_camera_pos.append(torch.stack(sample_target_camera_pos, dim=0))
target_Ks.append(torch.stack(sample_target_Ks, dim=0))
target_env.append(sample_target_env)
target_materials.append(sample_target_materials)
del ref_mesh
del material
del mesh_attributes
torch.cuda.empty_cache()
gc.collect()
data = {
'input_images': torch.stack(input_images, dim=0).detach().cpu(), # (batch_size, input_view_num, 3, H, W)
'input_alphas': torch.stack(input_alphas, dim=0).detach().cpu(), # (batch_size, input_view_num, 1, H, W)
'input_depths': torch.stack(input_depths, dim=0).detach().cpu(),
'input_normals': torch.stack(input_normals, dim=0).detach().cpu(),
'input_albedos': torch.stack(input_albedos, dim=0).detach().cpu(),
'input_spec_light': torch.stack(input_spec_light, dim=0).detach().cpu(),
'input_diff_light': torch.stack(input_diff_light, dim=0).detach().cpu(),
'input_materials': input_materials,
'input_w2cs': torch.stack(input_w2cs, dim=0).squeeze(2), # (batch_size, input_view_num, 4, 4)
'input_Ks': torch.stack(input_Ks, dim=0).float(), # (batch_size, input_view_num, 3, 3)
'input_env': input_env,
'input_camera_pos': torch.stack(input_camera_pos, dim=0).squeeze(2), # (batch_size, input_view_num, 3)
'input_c2ws': torch.stack(input_c2ws, dim=0).squeeze(2), # (batch_size, input_view_num, 4, 4)
'input_camera_embedding': torch.stack(input_camera_embeddings, dim=0).squeeze(2),
'target_sample_points': None,
'target_images': torch.stack(target_images, dim=0).detach().cpu(), # (batch_size, target_view_num, 3, H, W)
'target_alphas': torch.stack(target_alphas, dim=0).detach().cpu(), # (batch_size, target_view_num, 1, H, W)
'target_depths': torch.stack(target_depths, dim=0).detach().cpu(),
'target_normals': torch.stack(target_normals, dim=0).detach().cpu(),
'target_albedos': torch.stack(target_albedos, dim=0).detach().cpu(),
'target_spec_light': torch.stack(target_spec_light, dim=0).detach().cpu(),
'target_diff_light': torch.stack(target_diff_light, dim=0).detach().cpu(),
'target_materials': target_materials,
'target_w2cs': torch.stack(target_w2cs, dim=0).squeeze(2), # (batch_size, target_view_num, 4, 4)
'target_Ks': torch.stack(target_Ks, dim=0).float(), # (batch_size, target_view_num, 3, 3)
'target_env': target_env,
'target_camera_pos': torch.stack(target_camera_pos, dim=0).squeeze(2) # (batch_size, target_view_num, 3)
}
return data
def prepare_batch_data(self, batch):
# breakpoint()
lrm_generator_input = {}
render_gt = {}
# input images
images = batch['input_images']
images = v2.functional.resize(images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)
batch_size = images.shape[0]
# breakpoint()
lrm_generator_input['images'] = images.to(self.device)
# input cameras and render cameras
# input_c2ws = batch['input_c2ws']
input_Ks = batch['input_Ks']
# target_c2ws = batch['target_c2ws']
input_camera_embedding = batch["input_camera_embedding"].to(self.device)
input_w2cs = batch['input_w2cs']
target_w2cs = batch['target_w2cs']
render_w2cs = torch.cat([input_w2cs, target_w2cs], dim=1)
input_camera_pos = batch['input_camera_pos']
target_camera_pos = batch['target_camera_pos']
render_camera_pos = torch.cat([input_camera_pos, target_camera_pos], dim=1)
input_extrinsics = input_camera_embedding.flatten(-2)
input_extrinsics = input_extrinsics[:, :, :12]
input_intrinsics = input_Ks.flatten(-2).to(self.device)
input_intrinsics = torch.stack([
input_intrinsics[:, :, 0], input_intrinsics[:, :, 4],
input_intrinsics[:, :, 2], input_intrinsics[:, :, 5],
], dim=-1)
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)
# add noise to input_cameras
cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02
lrm_generator_input['cameras'] = cameras.to(self.device)
lrm_generator_input['render_cameras'] = render_w2cs.to(self.device)
lrm_generator_input['cameras_pos'] = render_camera_pos.to(self.device)
lrm_generator_input['env'] = []
lrm_generator_input['materials'] = []
for i in range(batch_size):
lrm_generator_input['env'].append( batch['input_env'][i] + batch['target_env'][i])
lrm_generator_input['materials'].append( batch['input_materials'][i] + batch['target_materials'][i])
lrm_generator_input['albedo'] = torch.cat([batch['input_albedos'],batch['target_albedos']],dim=1)
# target images
target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1)
target_albedos = torch.cat([batch['input_albedos'], batch['target_albedos']], dim=1)
target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1)
target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1)
target_normals = torch.cat([batch['input_normals'], batch['target_normals']], dim=1)
target_spec_lights = torch.cat([batch['input_spec_light'], batch['target_spec_light']], dim=1)
target_diff_lights = torch.cat([batch['input_diff_light'], batch['target_diff_light']], dim=1)
render_size = self.render_size
target_images = v2.functional.resize(
target_images, render_size, interpolation=3, antialias=True).clamp(0, 1)
target_depths = v2.functional.resize(
target_depths, render_size, interpolation=0, antialias=True)
target_alphas = v2.functional.resize(
target_alphas, render_size, interpolation=0, antialias=True)
target_normals = v2.functional.resize(
target_normals, render_size, interpolation=3, antialias=True)
lrm_generator_input['render_size'] = render_size
render_gt['target_sample_points'] = batch['target_sample_points']
render_gt['target_images'] = target_images.to(self.device)
render_gt['target_albedos'] = target_albedos.to(self.device)
render_gt['target_depths'] = target_depths.to(self.device)
render_gt['target_alphas'] = target_alphas.to(self.device)
render_gt['target_normals'] = target_normals.to(self.device)
render_gt['target_spec_lights'] = target_spec_lights.to(self.device)
render_gt['target_diff_lights'] = target_diff_lights.to(self.device)
# render_gt['target_spec_albedos'] = target_spec_albedos.to(self.device)
# render_gt['target_diff_albedos'] = target_diff_albedos.to(self.device)
return lrm_generator_input, render_gt
def prepare_validation_batch_data(self, batch):
lrm_generator_input = {}
# input images
images = batch['input_images']
images = v2.functional.resize(
images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)
lrm_generator_input['images'] = images.to(self.device)
lrm_generator_input['specular_light'] = batch['specular']
lrm_generator_input['diffuse_light'] = batch['diffuse']
lrm_generator_input['metallic'] = batch['input_metallics']
lrm_generator_input['roughness'] = batch['input_roughness']
proj = self.perspective(0.449, 1, 0.1, 1000., self.device)
# input cameras
input_c2ws = batch['input_c2ws'].flatten(-2)
input_Ks = batch['input_Ks'].flatten(-2)
input_extrinsics = input_c2ws[:, :, :12]
input_intrinsics = torch.stack([
input_Ks[:, :, 0], input_Ks[:, :, 4],
input_Ks[:, :, 2], input_Ks[:, :, 5],
], dim=-1)
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)
lrm_generator_input['cameras'] = cameras.to(self.device)
# render cameras
render_c2ws = batch['render_c2ws']
lrm_generator_input['camera_pos'] = torch.linalg.inv(render_w2cs.to(self.device) @ rotate_x(np.pi / 2, self.device))[..., :3, 3]
render_w2cs = ( render_w2cs @ rotate_x(np.pi / 2) )
lrm_generator_input['render_cameras'] = render_w2cs.to(self.device)
lrm_generator_input['render_size'] = 384
return lrm_generator_input
def forward_lrm_generator(self, images, cameras, camera_pos,env, materials, albedo_map, render_cameras, render_size=512, sample_points=None, gt_albedo_map=None):
planes = torch.utils.checkpoint.checkpoint(
self.lrm_generator.forward_planes,
images,
cameras,
use_reentrant=False,
)
out = self.lrm_generator.forward_geometry(
planes,
render_cameras,
camera_pos,
env,
materials,
albedo_map,
render_size,
sample_points,
gt_albedo_map
)
return out
def forward(self, lrm_generator_input, gt_albedo_map=None):
images = lrm_generator_input['images']
cameras = lrm_generator_input['cameras']
render_cameras = lrm_generator_input['render_cameras']
render_size = lrm_generator_input['render_size']
env = lrm_generator_input['env']
materials = lrm_generator_input['materials']
albedo_map = lrm_generator_input['albedo']
camera_pos = lrm_generator_input['cameras_pos']
out = self.forward_lrm_generator(
images, cameras, camera_pos, env, materials, albedo_map, render_cameras, render_size=render_size, sample_points=self.sample_points, gt_albedo_map=gt_albedo_map)
return out
def training_step(self, batch, batch_idx):
batch = self.collate_fn(batch)
lrm_generator_input, render_gt = self.prepare_batch_data(batch)
if self.use_gt_albedo:
gt_albedo_map = render_gt['target_albedos']
else:
gt_albedo_map = None
render_out = self.forward(lrm_generator_input, gt_albedo_map=gt_albedo_map)
loss, loss_dict = self.compute_loss(render_out, render_gt)
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, batch_size=len(batch['input_images']), sync_dist=True)
if self.global_step % 20 == 0 and self.global_rank == 0 :
B, N, C, H, W = render_gt['target_images'].shape
N_in = lrm_generator_input['images'].shape[1]
target_images = rearrange(render_gt['target_images'], 'b n c h w -> b c h (n w)')
render_images = rearrange(render_out['pbr_img'], 'b n c h w -> b c h (n w)')
target_alphas = rearrange(repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
target_spec_light = rearrange(render_gt['target_spec_lights'], 'b n c h w -> b c h (n w)')
target_diff_light = rearrange(render_gt['target_diff_lights'], 'b n c h w -> b c h (n w)')
render_alphas = rearrange(render_out['mask'], 'b n c h w -> b c h (n w)')
render_albodos = rearrange(render_out['albedo'], 'b n c h w -> b c h (n w)')
target_albedos = rearrange(render_gt['target_albedos'], 'b n c h w -> b c h (n w)')
render_spec_light = rearrange(render_out['pbr_spec_light'], 'b n c h w -> b c h (n w)')
render_diffuse_light = rearrange(render_out['pbr_diffuse_light'], 'b n c h w -> b c h (n w)')
render_normal = rearrange(render_out['normal_img'], 'b n c h w -> b c h (n w)')
target_depths = rearrange(render_gt['target_depths'], 'b n c h w -> b c h (n w)')
render_depths = rearrange(render_out['depth'], 'b n c h w -> b c h (n w)')
target_normals = rearrange(render_gt['target_normals'], 'b n c h w -> b c h (n w)')
MAX_DEPTH = torch.max(target_depths)
target_depths = target_depths / MAX_DEPTH * target_alphas
render_depths = render_depths / MAX_DEPTH * render_alphas
grid = torch.cat([
target_images, render_images,
target_alphas, render_alphas,
target_albedos, render_albodos,
target_spec_light, render_spec_light,
target_diff_light, render_diffuse_light,
(target_normals+1)/2, (render_normal+1)/2,
target_depths, render_depths
], dim=-2).detach().cpu()
grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1))
image_path = os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png')
save_image(grid, image_path)
print(f"Saved image to {image_path}")
return loss
def total_variation_loss(self, img, beta=2.0):
bs_img, n_view, c_img, h_img, w_img = img.size()
tv_h = torch.pow(img[...,1:,:]-img[...,:-1,:], beta).sum()
tv_w = torch.pow(img[...,:,1:]-img[...,:,:-1], beta).sum()
return (tv_h+tv_w)/(bs_img*n_view*c_img*h_img*w_img)
def compute_loss(self, render_out, render_gt):
# NOTE: the rgb value range of OpenLRM is [0, 1]
render_albedo_image = render_out['albedo']
render_pbr_image = render_out['pbr_img']
render_spec_light = render_out['pbr_spec_light']
render_diff_light = render_out['pbr_diffuse_light']
target_images = render_gt['target_images'].to(render_albedo_image)
target_albedos = render_gt['target_albedos'].to(render_albedo_image)
target_spec_light = render_gt['target_spec_lights'].to(render_albedo_image)
target_diff_light = render_gt['target_diff_lights'].to(render_albedo_image)
render_images = rearrange(render_pbr_image, 'b n ... -> (b n) ...') * 2.0 - 1.0
target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0
render_albedos = rearrange(render_albedo_image, 'b n ... -> (b n) ...') * 2.0 - 1.0
target_albedos = rearrange(target_albedos, 'b n ... -> (b n) ...') * 2.0 - 1.0
render_spec_light = rearrange(render_spec_light, 'b n ... -> (b n) ...') * 2.0 - 1.0
target_spec_light = rearrange(target_spec_light, 'b n ... -> (b n) ...') * 2.0 - 1.0
render_diff_light = rearrange(render_diff_light, 'b n ... -> (b n) ...') * 2.0 - 1.0
target_diff_light = rearrange(target_diff_light, 'b n ... -> (b n) ...') * 2.0 - 1.0
loss_mse = F.mse_loss(render_images, target_images)
loss_mse_albedo = F.mse_loss(render_albedos, target_albedos)
loss_rgb_lpips = 2.0 * self.lpips(render_images, target_images)
loss_albedo_lpips = 2.0 * self.lpips(render_albedos, target_albedos)
loss_spec_light = F.mse_loss(render_spec_light, target_spec_light)
loss_diff_light = F.mse_loss(render_diff_light, target_diff_light)
loss_spec_light_lpips = 2.0 * self.lpips(render_spec_light.clamp(-1., 1.), target_spec_light.clamp(-1., 1.))
loss_diff_light_lpips = 2.0 * self.lpips(render_diff_light.clamp(-1., 1.), target_diff_light.clamp(-1., 1.))
render_alphas = render_out['mask'][:,:,:1,:,:]
target_alphas = render_gt['target_alphas']
loss_mask = F.mse_loss(render_alphas, target_alphas)
render_depths = torch.mean(render_out['depth'], dim=2, keepdim=True)
target_depths = torch.mean(render_gt['target_depths'], dim=2, keepdim=True)
loss_depth = 0.5 * F.l1_loss(render_depths[(target_alphas>0)], target_depths[target_alphas>0])
render_normals = render_out['normal'][...,:3].permute(0,3,1,2).unsqueeze(0)
target_normals = render_gt['target_normals']
similarity = (render_normals * target_normals).sum(dim=-3).abs()
normal_mask = target_alphas.squeeze(-3)
loss_normal = 1 - similarity[normal_mask>0].mean()
loss_normal = 0.2 * loss_normal * 1.0
# tv loss
if self.use_tv_loss:
triplane = render_out['triplane']
tv_loss = self.total_variation_loss(triplane, beta=2.0)
# flexicubes regularization loss
sdf = render_out['sdf']
sdf_reg_loss = render_out['sdf_reg_loss']
sdf_reg_loss_entropy = sdf_reg_loss_batch(sdf, self.lrm_generator.geometry.all_edges).mean() * 0.01
_, flexicubes_surface_reg, flexicubes_weights_reg = sdf_reg_loss
flexicubes_surface_reg = flexicubes_surface_reg.mean() * 0.5
flexicubes_weights_reg = flexicubes_weights_reg.mean() * 0.1
loss_reg = sdf_reg_loss_entropy + flexicubes_surface_reg + flexicubes_weights_reg
loss_reg = loss_reg
loss = loss_mse + loss_rgb_lpips + loss_albedo_lpips + loss_mask + loss_reg + loss_mse_albedo + loss_depth + \
loss_normal + loss_spec_light + loss_diff_light + loss_spec_light_lpips + loss_diff_light_lpips
if self.use_tv_loss:
loss += tv_loss * 2e-4
prefix = 'train'
loss_dict = {}
loss_dict.update({f'{prefix}/loss_mse': loss_mse.item()})
loss_dict.update({f'{prefix}/loss_mse_albedo': loss_mse_albedo.item()})
loss_dict.update({f'{prefix}/loss_rgb_lpips': loss_rgb_lpips.item()})
loss_dict.update({f'{prefix}/loss_albedo_lpips': loss_albedo_lpips.item()})
loss_dict.update({f'{prefix}/loss_mask': loss_mask.item()})
loss_dict.update({f'{prefix}/loss_normal': loss_normal.item()})
loss_dict.update({f'{prefix}/loss_depth': loss_depth.item()})
loss_dict.update({f'{prefix}/loss_spec_light': loss_spec_light.item()})
loss_dict.update({f'{prefix}/loss_diff_light': loss_diff_light.item()})
loss_dict.update({f'{prefix}/loss_spec_light_lpips': loss_spec_light_lpips.item()})
loss_dict.update({f'{prefix}/loss_diff_light_lpips': loss_diff_light_lpips.item()})
loss_dict.update({f'{prefix}/loss_reg_sdf': sdf_reg_loss_entropy.item()})
loss_dict.update({f'{prefix}/loss_reg_surface': flexicubes_surface_reg.item()})
loss_dict.update({f'{prefix}/loss_reg_weights': flexicubes_weights_reg.item()})
if self.use_tv_loss:
loss_dict.update({f'{prefix}/loss_tv': tv_loss.item()})
loss_dict.update({f'{prefix}/loss': loss.item()})
return loss, loss_dict
@torch.no_grad()
def validation_step(self, batch, batch_idx):
lrm_generator_input = self.prepare_validation_batch_data(batch)
render_out = self.forward(lrm_generator_input)
render_images = rearrange(render_out['pbr_img'], 'b n c h w -> b c h (n w)')
render_albodos = rearrange(render_out['img'], 'b n c h w -> b c h (n w)')
self.validation_step_outputs.append(render_images)
self.validation_step_outputs.append(render_albodos)
def on_validation_epoch_end(self):
images = torch.cat(self.validation_step_outputs, dim=0)
all_images = self.all_gather(images)
all_images = rearrange(all_images, 'r b c h w -> (r b) c h w')
if self.global_rank == 0:
image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png')
grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1))
save_image(grid, image_path)
print(f"Saved image to {image_path}")
self.validation_step_outputs.clear()
def configure_optimizers(self):
lr = self.learning_rate
optimizer = torch.optim.AdamW(
self.lrm_generator.parameters(), lr=lr, betas=(0.90, 0.95), weight_decay=0.01)
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 100000, eta_min=0)
return {'optimizer': optimizer, 'lr_scheduler': scheduler}