PRM / src /models /geometry /render /neural_render.py
LTT's picture
new
57d83be
raw
history blame
13.2 kB
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
import torch.nn.functional as F
import nvdiffrast.torch as dr
import os
from . import Renderer
from . import util
from . import renderutils as ru
_FG_LUT = None
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] += os.pathsep + os.path.join(os.environ["CUDA_HOME"], "bin")
os.environ["LD_LIBRARY_PATH"] = os.environ.get("LD_LIBRARY_PATH", "") + os.pathsep + os.path.join(os.environ["CUDA_HOME"], "lib64")
def interpolate(attr, rast, attr_idx, rast_db=None):
return dr.interpolate(
attr.contiguous(), rast, attr_idx, rast_db=rast_db,
diff_attrs=None if rast_db is None else 'all')
def xfm_points(points, matrix, use_python=True):
'''Transform points.
Args:
points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3]
matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4]
use_python: Use PyTorch's torch.matmul (for validation)
Returns:
Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4].
'''
out = torch.matmul(torch.nn.functional.pad(points, pad=(0, 1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2))
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN"
return out
def dot(x, y):
return torch.sum(x * y, -1, keepdim=True)
def compute_vertex_normal(v_pos, t_pos_idx):
i0 = t_pos_idx[:, 0]
i1 = t_pos_idx[:, 1]
i2 = t_pos_idx[:, 2]
v0 = v_pos[i0, :]
v1 = v_pos[i1, :]
v2 = v_pos[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
v_nrm = torch.zeros_like(v_pos)
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where(
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
)
v_nrm = F.normalize(v_nrm, dim=1)
assert torch.all(torch.isfinite(v_nrm))
return v_nrm
class NeuralRender(Renderer):
def __init__(self, device='cuda', camera_model=None):
super(NeuralRender, self).__init__()
self.device = device
# self.ctx = dr.RasterizeCudaContext(device=device)
self.ctx = dr.RasterizeCudaContext().cuda()
self.projection_mtx = None
self.camera = camera_model
# ==============================================================================================
# pixel shader
# ==============================================================================================
# def shade(
# self,
# gb_pos,
# gb_geometric_normal,
# gb_normal,
# gb_tangent,
# gb_texc,
# gb_texc_deriv,
# view_pos,
# ):
# ################################################################################
# # Texture lookups
# ################################################################################
# breakpoint()
# # Separate kd into alpha and color, default alpha = 1
# alpha = kd[..., 3:4] if kd.shape[-1] == 4 else torch.ones_like(kd[..., 0:1])
# kd = kd[..., 0:3]
# ################################################################################
# # Normal perturbation & normal bend
# ################################################################################
# perturbed_nrm = None
# gb_normal = ru.prepare_shading_normal(gb_pos, view_pos, perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True)
# ################################################################################
# # Evaluate BSDF
# ################################################################################
# assert 'bsdf' in material or bsdf is not None, "Material must specify a BSDF type"
# bsdf = material['bsdf'] if bsdf is None else bsdf
# if bsdf == 'pbr':
# if isinstance(lgt, light.EnvironmentLight):
# shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=True)
# else:
# assert False, "Invalid light type"
# elif bsdf == 'diffuse':
# if isinstance(lgt, light.EnvironmentLight):
# shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=False)
# else:
# assert False, "Invalid light type"
# elif bsdf == 'normal':
# shaded_col = (gb_normal + 1.0)*0.5
# elif bsdf == 'tangent':
# shaded_col = (gb_tangent + 1.0)*0.5
# elif bsdf == 'kd':
# shaded_col = kd
# elif bsdf == 'ks':
# shaded_col = ks
# else:
# assert False, "Invalid BSDF '%s'" % bsdf
# # Return multiple buffers
# buffers = {
# 'shaded' : torch.cat((shaded_col, alpha), dim=-1),
# 'kd_grad' : torch.cat((kd_grad, alpha), dim=-1),
# 'occlusion' : torch.cat((ks[..., :1], alpha), dim=-1)
# }
# return buffers
# ==============================================================================================
# Render a depth slice of the mesh (scene), some limitations:
# - Single mesh
# - Single light
# - Single material
# ==============================================================================================
def render_layer(
self,
rast,
rast_deriv,
mesh,
view_pos,
resolution,
spp,
msaa
):
# Scale down to shading resolution when MSAA is enabled, otherwise shade at full resolution
rast_out_s = rast
rast_out_deriv_s = rast_deriv
################################################################################
# Interpolate attributes
################################################################################
# Interpolate world space position
gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast_out_s, mesh.t_pos_idx.int())
# Compute geometric normals. We need those because of bent normals trick (for bump mapping)
v0 = mesh.v_pos[mesh.t_pos_idx[:, 0], :]
v1 = mesh.v_pos[mesh.t_pos_idx[:, 1], :]
v2 = mesh.v_pos[mesh.t_pos_idx[:, 2], :]
face_normals = util.safe_normalize(torch.cross(v1 - v0, v2 - v0))
face_normal_indices = (torch.arange(0, face_normals.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3)
gb_geometric_normal, _ = interpolate(face_normals[None, ...], rast_out_s, face_normal_indices.int())
# Compute tangent space
assert mesh.v_nrm is not None and mesh.v_tng is not None
gb_normal, _ = interpolate(mesh.v_nrm[None, ...], rast_out_s, mesh.t_nrm_idx.int())
gb_tangent, _ = interpolate(mesh.v_tng[None, ...], rast_out_s, mesh.t_tng_idx.int()) # Interpolate tangents
# Texture coordinate
# assert mesh.v_tex is not None
# gb_texc, gb_texc_deriv = interpolate(mesh.v_tex[None, ...], rast_out_s, mesh.t_tex_idx.int(), rast_db=rast_out_deriv_s)
perturbed_nrm = None
gb_normal = ru.prepare_shading_normal(gb_pos, view_pos[:,None,None,:], perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True)
return gb_pos, gb_normal
def render_mesh(
self,
mesh_v_pos_bxnx3,
mesh_t_pos_idx_fx3,
mesh,
camera_mv_bx4x4,
camera_pos,
mesh_v_feat_bxnxd,
resolution=256,
spp=1,
device='cuda',
hierarchical_mask=False
):
assert not hierarchical_mask
mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4
v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in) # Rotate it to camera coordinates
v_pos_clip = self.camera.project(v_pos) # Projection in the camera
# view_pos = torch.linalg.inv(mtx_in)[:, :3, 3]
view_pos = camera_pos
v_nrm = mesh.v_nrm #compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long()) # vertex normals in world coordinates
# Render the image,
# Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render
num_layers = 1
mask_pyramid = None
assert mesh_t_pos_idx_fx3.shape[0] > 0 # Make sure we have shapes
mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1) # Concatenate the pos [org_pos, clip space pose for rasterization]
layers = []
with dr.DepthPeeler(self.ctx, v_pos_clip, mesh.t_pos_idx.int(), [resolution * spp, resolution * spp]) as peeler:
for _ in range(num_layers):
rast, db = peeler.rasterize_next_layer()
gb_pos, gb_normal = self.render_layer(rast, db, mesh, view_pos, resolution, spp, msaa=False)
with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler:
for _ in range(num_layers):
rast, db = peeler.rasterize_next_layer()
gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3)
hard_mask = torch.clamp(rast[..., -1:], 0, 1)
antialias_mask = dr.antialias(
hard_mask.clone().contiguous(), rast, v_pos_clip,
mesh_t_pos_idx_fx3)
depth = gb_feat[..., -2:-1]
ori_mesh_feature = gb_feat[..., :-4]
normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3)
normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3)
# normal = F.normalize(normal, dim=-1)
# normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float()) # black background
return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal, gb_normal
def render_mesh_light(
self,
mesh_v_pos_bxnx3,
mesh_t_pos_idx_fx3,
mesh,
camera_mv_bx4x4,
mesh_v_feat_bxnxd,
resolution=256,
spp=1,
device='cuda',
hierarchical_mask=False
):
assert not hierarchical_mask
mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4
v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in) # Rotate it to camera coordinates
v_pos_clip = self.camera.project(v_pos) # Projection in the camera
v_nrm = compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long()) # vertex normals in world coordinates
# Render the image,
# Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render
num_layers = 1
mask_pyramid = None
assert mesh_t_pos_idx_fx3.shape[0] > 0 # Make sure we have shapes
mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1) # Concatenate the pos
with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler:
for _ in range(num_layers):
rast, db = peeler.rasterize_next_layer()
gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3)
hard_mask = torch.clamp(rast[..., -1:], 0, 1)
antialias_mask = dr.antialias(
hard_mask.clone().contiguous(), rast, v_pos_clip,
mesh_t_pos_idx_fx3)
depth = gb_feat[..., -2:-1]
ori_mesh_feature = gb_feat[..., :-4]
normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3)
normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3)
normal = F.normalize(normal, dim=-1)
normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float()) # black background
return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal