|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import torch |
|
import nvdiffrast.torch as dr |
|
|
|
from . import util |
|
from . import renderutils as ru |
|
|
|
|
|
|
|
|
|
|
|
class cubemap_mip(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, cubemap): |
|
return util.avg_pool_nhwc(cubemap, (2,2)) |
|
|
|
@staticmethod |
|
def backward(ctx, dout): |
|
res = dout.shape[1] * 2 |
|
out = torch.zeros(6, res, res, dout.shape[-1], dtype=torch.float32, device="cuda") |
|
for s in range(6): |
|
gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), |
|
torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), |
|
indexing='ij') |
|
v = util.safe_normalize(util.cube_to_dir(s, gx, gy)) |
|
out[s, ...] = dr.texture(dout[None, ...] * 0.25, v[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube') |
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class EnvironmentLight(torch.nn.Module): |
|
LIGHT_MIN_RES = 16 |
|
|
|
MIN_ROUGHNESS = 0.08 |
|
MAX_ROUGHNESS = 0.5 |
|
|
|
def __init__(self, base): |
|
super(EnvironmentLight, self).__init__() |
|
self.mtx = None |
|
self.base = torch.nn.Parameter(base.clone().detach(), requires_grad=True) |
|
self.register_parameter('env_base', self.base) |
|
|
|
def xfm(self, mtx): |
|
self.mtx = mtx |
|
|
|
def clone(self): |
|
return EnvironmentLight(self.base.clone().detach()) |
|
|
|
def clamp_(self, min=None, max=None): |
|
self.base.clamp_(min, max) |
|
|
|
def get_mip(self, roughness): |
|
return torch.where(roughness < self.MAX_ROUGHNESS |
|
, (torch.clamp(roughness, self.MIN_ROUGHNESS, self.MAX_ROUGHNESS) - self.MIN_ROUGHNESS) / (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) * (len(self.specular) - 2) |
|
, (torch.clamp(roughness, self.MAX_ROUGHNESS, 1.0) - self.MAX_ROUGHNESS) / (1.0 - self.MAX_ROUGHNESS) + len(self.specular) - 2) |
|
|
|
def build_mips(self, cutoff=0.99): |
|
self.specular = [self.base] |
|
while self.specular[-1].shape[1] > self.LIGHT_MIN_RES: |
|
self.specular += [cubemap_mip.apply(self.specular[-1])] |
|
|
|
self.diffuse = ru.diffuse_cubemap(self.specular[-1]) |
|
|
|
for idx in range(len(self.specular) - 1): |
|
roughness = (idx / (len(self.specular) - 2)) * (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) + self.MIN_ROUGHNESS |
|
self.specular[idx] = ru.specular_cubemap(self.specular[idx], roughness, cutoff) |
|
self.specular[-1] = ru.specular_cubemap(self.specular[-1], 1.0, cutoff) |
|
|
|
def regularizer(self): |
|
white = (self.base[..., 0:1] + self.base[..., 1:2] + self.base[..., 2:3]) / 3.0 |
|
return torch.mean(torch.abs(self.base - white)) |
|
|
|
def shade(self, gb_pos, gb_normal, kd, ks, view_pos, specular=True): |
|
wo = util.safe_normalize(view_pos - gb_pos) |
|
|
|
if specular: |
|
roughness = ks[..., 1:2] |
|
metallic = ks[..., 2:3] |
|
spec_col = (1.0 - metallic)*0.04 + kd * metallic |
|
diff_col = kd * (1.0 - metallic) |
|
else: |
|
diff_col = kd |
|
|
|
reflvec = util.safe_normalize(util.reflect(wo, gb_normal)) |
|
nrmvec = gb_normal |
|
if self.mtx is not None: |
|
mtx = torch.as_tensor(self.mtx, dtype=torch.float32, device='cuda') |
|
reflvec = ru.xfm_vectors(reflvec.view(reflvec.shape[0], reflvec.shape[1] * reflvec.shape[2], reflvec.shape[3]), mtx).view(*reflvec.shape) |
|
nrmvec = ru.xfm_vectors(nrmvec.view(nrmvec.shape[0], nrmvec.shape[1] * nrmvec.shape[2], nrmvec.shape[3]), mtx).view(*nrmvec.shape) |
|
|
|
|
|
diffuse = dr.texture(self.diffuse[None, ...], nrmvec.contiguous(), filter_mode='linear', boundary_mode='cube') |
|
shaded_col = diffuse * diff_col |
|
|
|
if specular: |
|
|
|
NdotV = torch.clamp(util.dot(wo, gb_normal), min=1e-4) |
|
fg_uv = torch.cat((NdotV, roughness), dim=-1) |
|
if not hasattr(self, '_FG_LUT'): |
|
self._FG_LUT = torch.as_tensor(np.fromfile('data/irrmaps/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda') |
|
fg_lookup = dr.texture(self._FG_LUT, fg_uv, filter_mode='linear', boundary_mode='clamp') |
|
|
|
|
|
miplevel = self.get_mip(roughness) |
|
spec = dr.texture(self.specular[0][None, ...], reflvec.contiguous(), mip=list(m[None, ...] for m in self.specular[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube') |
|
|
|
|
|
reflectance = spec_col * fg_lookup[...,0:1] + fg_lookup[...,1:2] |
|
shaded_col += spec * reflectance |
|
|
|
return shaded_col * (1.0 - ks[..., 0:1]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _load_env_hdr(fn, scale=1.0): |
|
latlong_img = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda')*scale |
|
cubemap = util.latlong_to_cubemap(latlong_img, [512, 512]) |
|
|
|
l = EnvironmentLight(cubemap) |
|
l.build_mips() |
|
|
|
return l |
|
|
|
def load_env(fn, scale=1.0): |
|
if os.path.splitext(fn)[1].lower() == ".hdr": |
|
return _load_env_hdr(fn, scale) |
|
else: |
|
assert False, "Unknown envlight extension %s" % os.path.splitext(fn)[1] |
|
|
|
def save_env_map(fn, light): |
|
assert isinstance(light, EnvironmentLight), "Can only save EnvironmentLight currently" |
|
if isinstance(light, EnvironmentLight): |
|
color = util.cubemap_to_latlong(light.base, [512, 1024]) |
|
util.save_image_raw(fn, color.detach().cpu().numpy()) |
|
|
|
|
|
|
|
|
|
|
|
def create_trainable_env_rnd(base_res, scale=0.5, bias=0.25): |
|
base = torch.rand(6, base_res, base_res, 3, dtype=torch.float32, device='cuda') * scale + bias |
|
return EnvironmentLight(base) |
|
|
|
|