JiantaoLin
new
2fe3da0
raw
history blame
7.26 kB
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import os
import numpy as np
import torch
import nvdiffrast.torch as dr
from . import util
from . import renderutils as ru
######################################################################################
# Utility functions
######################################################################################
class cubemap_mip(torch.autograd.Function):
@staticmethod
def forward(ctx, cubemap):
return util.avg_pool_nhwc(cubemap, (2,2))
@staticmethod
def backward(ctx, dout):
res = dout.shape[1] * 2
out = torch.zeros(6, res, res, dout.shape[-1], dtype=torch.float32, device="cuda")
for s in range(6):
gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"),
torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"),
indexing='ij')
v = util.safe_normalize(util.cube_to_dir(s, gx, gy))
out[s, ...] = dr.texture(dout[None, ...] * 0.25, v[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')
return out
######################################################################################
# Split-sum environment map light source with automatic mipmap generation
######################################################################################
class EnvironmentLight(torch.nn.Module):
LIGHT_MIN_RES = 16
MIN_ROUGHNESS = 0.08
MAX_ROUGHNESS = 0.5
def __init__(self, base):
super(EnvironmentLight, self).__init__()
self.mtx = None
self.base = torch.nn.Parameter(base.clone().detach(), requires_grad=True)
self.register_parameter('env_base', self.base)
def xfm(self, mtx):
self.mtx = mtx
def clone(self):
return EnvironmentLight(self.base.clone().detach())
def clamp_(self, min=None, max=None):
self.base.clamp_(min, max)
def get_mip(self, roughness):
return torch.where(roughness < self.MAX_ROUGHNESS
, (torch.clamp(roughness, self.MIN_ROUGHNESS, self.MAX_ROUGHNESS) - self.MIN_ROUGHNESS) / (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) * (len(self.specular) - 2)
, (torch.clamp(roughness, self.MAX_ROUGHNESS, 1.0) - self.MAX_ROUGHNESS) / (1.0 - self.MAX_ROUGHNESS) + len(self.specular) - 2)
def build_mips(self, cutoff=0.99):
self.specular = [self.base]
while self.specular[-1].shape[1] > self.LIGHT_MIN_RES:
self.specular += [cubemap_mip.apply(self.specular[-1])]
self.diffuse = ru.diffuse_cubemap(self.specular[-1])
for idx in range(len(self.specular) - 1):
roughness = (idx / (len(self.specular) - 2)) * (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) + self.MIN_ROUGHNESS
self.specular[idx] = ru.specular_cubemap(self.specular[idx], roughness, cutoff)
self.specular[-1] = ru.specular_cubemap(self.specular[-1], 1.0, cutoff)
def regularizer(self):
white = (self.base[..., 0:1] + self.base[..., 1:2] + self.base[..., 2:3]) / 3.0
return torch.mean(torch.abs(self.base - white))
def shade(self, gb_pos, gb_normal, kd, ks, view_pos, specular=True):
wo = util.safe_normalize(view_pos - gb_pos)
if specular:
roughness = ks[..., 1:2] # y component
metallic = ks[..., 2:3] # z component
spec_col = (1.0 - metallic)*0.04 + kd * metallic
diff_col = kd * (1.0 - metallic)
else:
diff_col = kd
reflvec = util.safe_normalize(util.reflect(wo, gb_normal))
nrmvec = gb_normal
if self.mtx is not None: # Rotate lookup
mtx = torch.as_tensor(self.mtx, dtype=torch.float32, device='cuda')
reflvec = ru.xfm_vectors(reflvec.view(reflvec.shape[0], reflvec.shape[1] * reflvec.shape[2], reflvec.shape[3]), mtx).view(*reflvec.shape)
nrmvec = ru.xfm_vectors(nrmvec.view(nrmvec.shape[0], nrmvec.shape[1] * nrmvec.shape[2], nrmvec.shape[3]), mtx).view(*nrmvec.shape)
# Diffuse lookup
diffuse = dr.texture(self.diffuse[None, ...], nrmvec.contiguous(), filter_mode='linear', boundary_mode='cube')
shaded_col = diffuse * diff_col
if specular:
# Lookup FG term from lookup texture
NdotV = torch.clamp(util.dot(wo, gb_normal), min=1e-4)
fg_uv = torch.cat((NdotV, roughness), dim=-1)
if not hasattr(self, '_FG_LUT'):
self._FG_LUT = torch.as_tensor(np.fromfile('data/irrmaps/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda')
fg_lookup = dr.texture(self._FG_LUT, fg_uv, filter_mode='linear', boundary_mode='clamp')
# Roughness adjusted specular env lookup
miplevel = self.get_mip(roughness)
spec = dr.texture(self.specular[0][None, ...], reflvec.contiguous(), mip=list(m[None, ...] for m in self.specular[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube')
# Compute aggregate lighting
reflectance = spec_col * fg_lookup[...,0:1] + fg_lookup[...,1:2]
shaded_col += spec * reflectance
return shaded_col * (1.0 - ks[..., 0:1]) # Modulate by hemisphere visibility
######################################################################################
# Load and store
######################################################################################
# Load from latlong .HDR file
def _load_env_hdr(fn, scale=1.0):
latlong_img = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda')*scale
cubemap = util.latlong_to_cubemap(latlong_img, [512, 512])
l = EnvironmentLight(cubemap)
l.build_mips()
return l
def load_env(fn, scale=1.0):
if os.path.splitext(fn)[1].lower() == ".hdr":
return _load_env_hdr(fn, scale)
else:
assert False, "Unknown envlight extension %s" % os.path.splitext(fn)[1]
def save_env_map(fn, light):
assert isinstance(light, EnvironmentLight), "Can only save EnvironmentLight currently"
if isinstance(light, EnvironmentLight):
color = util.cubemap_to_latlong(light.base, [512, 1024])
util.save_image_raw(fn, color.detach().cpu().numpy())
######################################################################################
# Create trainable env map with random initialization
######################################################################################
def create_trainable_env_rnd(base_res, scale=0.5, bias=0.25):
base = torch.rand(6, base_res, base_res, 3, dtype=torch.float32, device='cuda') * scale + bias
return EnvironmentLight(base)