JiantaoLin commited on
Commit
4157d39
·
1 Parent(s): a2907bc
image_to_mesh_new.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from einops import rearrange
3
+ from omegaconf import OmegaConf
4
+ import torch
5
+ import numpy as np
6
+ import trimesh
7
+ import torchvision
8
+ import torch.nn.functional as F
9
+ from PIL import Image
10
+ from torchvision import transforms
11
+ from torchvision.transforms import v2
12
+ from transformers import AutoProcessor, AutoModelForCausalLM
13
+ import rembg
14
+ from diffusers import FluxPipeline, FluxControlNetImg2ImgPipeline
15
+ from diffusers.models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
16
+ from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, HeunDiscreteScheduler
17
+ from pytorch_lightning import seed_everything
18
+ import os
19
+
20
+ from models.ISOMER.reconstruction_func import reconstruction
21
+ from models.ISOMER.projection_func import projection
22
+ from models.lrm.utils.infer_util import remove_background, resize_foreground, save_video
23
+ from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
24
+ from models.lrm.utils.render_utils import rotate_x, rotate_y
25
+ from models.lrm.utils.train_util import instantiate_from_config
26
+ from models.lrm.utils.camera_util import get_zero123plus_input_cameras, get_custom_zero123plus_input_cameras, get_flux_input_cameras
27
+ from utils.tool import NormalTransfer, get_render_cameras_frames, load_mipmap
28
+ from utils.tool import get_background, get_render_cameras_video, render_frames, mask_fix
29
+
30
+ device = "cuda"
31
+ resolution = 512
32
+ save_dir = "./outputs"
33
+ zero123plus_diffusion_steps = 75
34
+ normal_transfer = NormalTransfer()
35
+ rembg_session = rembg.new_session()
36
+ isomer_azimuths = torch.from_numpy(np.array([270, 0, 90, 180])).to(device)
37
+ isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).to(device)
38
+ isomer_radius = 4.1
39
+ isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device)
40
+ isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device)
41
+ # seed_everything(42)
42
+
43
+ # model initialization and loading
44
+ # flux
45
+ print('==> Loading Flux model ...')
46
+ flux_base_model_pth = "/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/models--black-forest-labs--FLUX.1-dev"
47
+ flux_controlnet = FluxControlNetModel.from_pretrained("/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/flux_controlnets/FLUX.1-dev-ControlNet-Union-Pro")
48
+ flux_pipe = FluxControlNetImg2ImgPipeline.from_pretrained(flux_base_model_pth, controlnet=[flux_controlnet], torch_dtype=torch.bfloat16).to(device=device, dtype=torch.bfloat16)
49
+
50
+ flux_pipe.load_lora_weights('./checkpoint/flux_lora/rgb_normal_large.safetensors')
51
+
52
+
53
+ flux_pipe.to(device=device, dtype=torch.bfloat16)
54
+ generator = torch.Generator(device=device).manual_seed(0)
55
+
56
+ # lrm
57
+ print('==> Loading LRM model ...')
58
+ config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
59
+ model_config = config.model_config
60
+ infer_config = config.infer_config
61
+ model = instantiate_from_config(model_config)
62
+ model_ckpt_path = "./checkpoint/lrm/final_ckpt.ckpt"
63
+ state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
64
+ state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
65
+ model.load_state_dict(state_dict, strict=True)
66
+
67
+ model = model.to(device)
68
+ model.init_flexicubes_geometry(device, fovy=50.0)
69
+ model = model.eval()
70
+
71
+ # zero123++
72
+ print('==> Loading diffusion model ...')
73
+ zero123plus_pipeline = DiffusionPipeline.from_pretrained(
74
+ "sudo-ai/zero123plus-v1.2",
75
+ custom_pipeline="./models/zero123plus",
76
+ torch_dtype=torch.float16,
77
+ )
78
+ zero123plus_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
79
+ zero123plus_pipeline.scheduler.config, timestep_spacing='trailing'
80
+ )
81
+ unet_ckpt_path = "./checkpoint/zero123++/flexgen_19w.ckpt"
82
+ state_dict = torch.load(unet_ckpt_path, map_location='cpu')['state_dict']
83
+ state_dict = {k[10:]: v for k, v in state_dict.items() if k.startswith('unet.unet.')}
84
+ zero123plus_pipeline.unet.load_state_dict(state_dict, strict=True)
85
+ zero123plus_pipeline = zero123plus_pipeline.to(device)
86
+
87
+ # unet_ckpt_path = "checkpoint/zero123++/diffusion_pytorch_model.bin"
88
+ # state_dict = torch.load(unet_ckpt_path, map_location='cpu')
89
+ # zero123plus_pipeline.unet.load_state_dict(state_dict, strict=True)
90
+ # zero123plus_pipeline = zero123plus_pipeline.to(device)
91
+
92
+ # florence
93
+ caption_model = AutoModelForCausalLM.from_pretrained(
94
+ "/hpc2hdd/home/jlin695/.cache/huggingface/hub/models--multimodalart--Florence-2-large-no-flash-attn/snapshots/8db3793cf5b453b2ccfb3a4f613b403b2e6b7ca2", torch_dtype=torch.bfloat16, trust_remote_code=True,
95
+ ).to(device)
96
+ caption_processor = AutoProcessor.from_pretrained("/hpc2hdd/home/jlin695/.cache/huggingface/hub/models--multimodalart--Florence-2-large-no-flash-attn/snapshots/8db3793cf5b453b2ccfb3a4f613b403b2e6b7ca2", trust_remote_code=True)
97
+
98
+ # Flux multi-view generation
99
+ def multi_view_rgb_normal_generation_with_controlnet(prompt, image, strength=1.0,
100
+ control_image=[],
101
+ control_mode=[],
102
+ control_guidance_start=None,
103
+ control_guidance_end=None,
104
+ controlnet_conditioning_scale=None,
105
+ lora_scale=1.0
106
+ ):
107
+ control_mode_dict = {
108
+ 'canny': 0,
109
+ 'tile': 1,
110
+ 'depth': 2,
111
+ 'blur': 3,
112
+ 'pose': 4,
113
+ 'gray': 5,
114
+ 'lq': 6,
115
+ } # for https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union only
116
+
117
+ hparam_dict = {
118
+ 'prompt': prompt,
119
+ 'image': image,
120
+ 'strength': strength,
121
+ 'num_inference_steps': 30,
122
+ 'guidance_scale': 3.5,
123
+ 'num_images_per_prompt': 1,
124
+ 'width': resolution*4,
125
+ 'height': resolution*2,
126
+ 'output_type': 'np',
127
+ 'generator': generator,
128
+ 'joint_attention_kwargs': {"scale": lora_scale}
129
+ }
130
+
131
+ # append controlnet hparams
132
+ if len(control_image) > 0:
133
+ assert len(control_mode) == len(control_image) # the count of image should be the same as control mode
134
+
135
+ ctrl_hparams = {
136
+ 'control_mode': [control_mode_dict[mode_] for mode_ in control_mode],
137
+ 'control_image': control_image,
138
+ 'control_guidance_start': control_guidance_start or [0.0 for i in range(len(control_image))],
139
+ 'control_guidance_end': control_guidance_end or [1.0 for i in range(len(control_image))],
140
+ 'controlnet_conditioning_scale': controlnet_conditioning_scale or [1.0 for i in range(len(control_image))],
141
+ }
142
+
143
+ hparam_dict.update(ctrl_hparams)
144
+
145
+ # generate multi-view images
146
+ with torch.no_grad():
147
+ image = flux_pipe(
148
+ **hparam_dict
149
+ ).images
150
+ return image
151
+
152
+ # captioning
153
+ def run_captioning(image):
154
+ device = "cuda" if torch.cuda.is_available() else "cpu"
155
+ torch_dtype = torch.bfloat16
156
+
157
+ if isinstance(image, str): # If image is a file path
158
+ image = Image.open(image).convert("RGB")
159
+
160
+ prompt = "<MORE_DETAILED_CAPTION>"
161
+ inputs = caption_processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
162
+ # print(f"inputs {inputs}")
163
+
164
+ generated_ids = caption_model.generate(
165
+ input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
166
+ )
167
+
168
+ generated_text = caption_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
169
+ parsed_answer = caption_processor.post_process_generation(
170
+ generated_text, task=prompt, image_size=(image.width, image.height)
171
+ )
172
+ # print(f"parsed_answer = {parsed_answer}")
173
+ caption_text = parsed_answer["<MORE_DETAILED_CAPTION>"].replace("The image is ", "")
174
+ return caption_text
175
+
176
+
177
+ # zero123++ multi-view generation
178
+ def multi_view_rgb_generation(cond_img):
179
+ # generate multi-view images
180
+ with torch.no_grad():
181
+ output_image = zero123plus_pipeline(
182
+ cond_img,
183
+ num_inference_steps=zero123plus_diffusion_steps,
184
+ width=resolution*2,
185
+ height=resolution*2,
186
+ ).images[0]
187
+ return output_image
188
+
189
+ # lrm reconstructions
190
+ def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False, render_azimuths=None, render_elevations=None, render_radius=None, render_fov=30):
191
+ images = image.unsqueeze(0).to(device)
192
+ images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
193
+ # breakpoint()
194
+ with torch.no_grad():
195
+ # get triplane
196
+ planes = model.forward_planes(images, input_cameras)
197
+
198
+ mesh_path_idx = os.path.join(save_path, f'{name}.obj')
199
+
200
+ mesh_out = model.extract_mesh(
201
+ planes,
202
+ use_texture_map=export_texmap,
203
+ **infer_config,
204
+ )
205
+ if export_texmap:
206
+ vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
207
+ save_obj_with_mtl(
208
+ vertices.data.cpu().numpy(),
209
+ uvs.data.cpu().numpy(),
210
+ faces.data.cpu().numpy(),
211
+ mesh_tex_idx.data.cpu().numpy(),
212
+ tex_map.permute(1, 2, 0).data.cpu().numpy(),
213
+ mesh_path_idx,
214
+ )
215
+ else:
216
+ vertices, faces, vertex_colors = mesh_out
217
+ save_obj(vertices, faces, vertex_colors, mesh_path_idx)
218
+ print(f"Mesh saved to {mesh_path_idx}")
219
+
220
+ render_size = 512
221
+ if if_save_video:
222
+ video_path_idx = os.path.join(save_path, f'{name}.mp4')
223
+ render_size = infer_config.render_resolution
224
+ ENV = load_mipmap("models/lrm/env_mipmap/6")
225
+ materials = (0.0,0.9)
226
+
227
+ all_mv, all_mvp, all_campos = get_render_cameras_video(
228
+ batch_size=1,
229
+ M=240,
230
+ radius=4.5,
231
+ elevation=(90, 60.0),
232
+ is_flexicubes=True,
233
+ fov=30
234
+ )
235
+
236
+ frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
237
+ model,
238
+ planes,
239
+ render_cameras=all_mvp,
240
+ camera_pos=all_campos,
241
+ env=ENV,
242
+ materials=materials,
243
+ render_size=render_size,
244
+ chunk_size=20,
245
+ is_flexicubes=True,
246
+ )
247
+ normals = (torch.nn.functional.normalize(normals) + 1) / 2
248
+ normals = normals * alphas + (1-alphas)
249
+ all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
250
+
251
+ # breakpoint()
252
+ save_video(
253
+ all_frames,
254
+ video_path_idx,
255
+ fps=30,
256
+ )
257
+ print(f"Video saved to {video_path_idx}")
258
+
259
+ if render_azimuths is not None and render_elevations is not None and render_radius is not None:
260
+ render_size = infer_config.render_resolution
261
+ ENV = load_mipmap("models/lrm/env_mipmap/6")
262
+ materials = (0.0,0.9)
263
+ all_mv, all_mvp, all_campos, identity_mv = get_render_cameras_frames(
264
+ batch_size=1,
265
+ radius=render_radius,
266
+ azimuths=render_azimuths,
267
+ elevations=render_elevations,
268
+ fov=30
269
+ )
270
+ frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
271
+ model,
272
+ planes,
273
+ render_cameras=all_mvp,
274
+ camera_pos=all_campos,
275
+ env=ENV,
276
+ materials=materials,
277
+ render_size=render_size,
278
+ render_mv = all_mv,
279
+ local_normal=True,
280
+ identity_mv=identity_mv,
281
+ )
282
+ else:
283
+ normals = None
284
+ frames = None
285
+ albedos = None
286
+
287
+ return vertices, faces, normals, frames, albedos
288
+
289
+
290
+ def transform_normal(input_normal, azimuths_deg, elevations_deg, radius=4.5, is_global_to_local=False):
291
+ """
292
+ input_normal: in range [-1, 1], shape (b c h w)
293
+ """
294
+
295
+ input_normal = input_normal.permute(0, 2, 3, 1).cpu()
296
+
297
+ azimuths_deg = np.array(azimuths_deg)
298
+ elevations_deg = np.array(elevations_deg)
299
+
300
+ if is_global_to_local:
301
+ local_normal = normal_transfer.trans_global_2_local(input_normal, azimuths_deg, elevations_deg)
302
+ return local_normal.permute(0, 3, 1, 2)
303
+ else:
304
+ global_normal = normal_transfer.trans_local_2_global(input_normal, azimuths_deg, elevations_deg, radius=radius, for_lotus=False)
305
+ global_normal[..., 0] *= -1
306
+ return global_normal.permute(0, 3, 1, 2)
307
+
308
+ def local_normal_global_transform(local_normal_images,azimuths_deg,elevations_deg):
309
+ if local_normal_images.min() >= 0:
310
+ local_normal = local_normal_images.float() * 2 - 1
311
+ else:
312
+ local_normal = local_normal_images.float()
313
+ global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
314
+ global_normal[...,0] *= -1
315
+ global_normal = (global_normal + 1) / 2
316
+ global_normal = global_normal.permute(0, 3, 1, 2)
317
+ return global_normal
318
+
319
+ def main():
320
+ image_pth = "examples/蓝色小怪物.webp"
321
+ save_dir_path = os.path.join(save_dir, image_pth.split("/")[-1].split(".")[0])
322
+ os.makedirs(save_dir_path, exist_ok=True)
323
+ input_image = Image.open(image_pth)
324
+ # if not args.no_rembg:
325
+ input_image = remove_background(input_image, rembg_session)
326
+ input_image = resize_foreground(input_image, 0.85)
327
+
328
+ # generate caption
329
+ image_caption = run_captioning(image_pth)
330
+
331
+ # generate multi-view images
332
+ output_image = multi_view_rgb_generation(input_image)
333
+
334
+ # lrm reconstructions
335
+ rgb_multi_view = np.asarray(output_image, dtype=np.float32) / 255.0
336
+ rgb_multi_view = torch.from_numpy(rgb_multi_view).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
337
+ rgb_multi_view = rearrange(rgb_multi_view, 'c (n h) (m w) -> (n m) c h w', n=2, m=2) # (8, 3, 512, 512)
338
+
339
+ input_cameras = get_custom_zero123plus_input_cameras(batch_size=1, radius=3.5, fov=30).to(device)
340
+
341
+ vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
342
+ lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm',
343
+ export_texmap=False, if_save_video=False, render_azimuths=isomer_azimuths,
344
+ render_elevations=isomer_elevations, render_radius=isomer_radius, render_fov=30)
345
+
346
+ vertices = torch.from_numpy(vertices).to(device)
347
+ faces = torch.from_numpy(faces).to(device)
348
+ vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3]
349
+ vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3]
350
+
351
+
352
+ # lrm_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
353
+ lrm_3D_bundle_image = torchvision.utils.make_grid(torch.cat([rgb_multi_view[[3,0,1,2]].cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
354
+ # rgb_multi_view[[3,0,1,2]] : (B,3,H,W)
355
+ # lrm_multi_view_normals : (B,3,H,W)
356
+ # combined_images = 0.5 * rgb_multi_view[[3,0,1,2]].cpu() + 0.5 * (lrm_multi_view_normals.cpu() + 1) / 2
357
+ # torchvision.utils.save_image(combined_images, os.path.join("debug_output", 'combined.png'))
358
+ # breakpoint()
359
+ # Use the low-quality controlnet by default, feel free to try the others
360
+ control_image = [lrm_3D_bundle_image * 2 - 1]
361
+ control_mode = ['tile']
362
+ control_guidance_start = [0.0]
363
+ control_guidance_end = [0.3]
364
+ controlnet_conditioning_scale = [0.8]
365
+
366
+ flux_pipe.controlnet = FluxMultiControlNetModel([flux_controlnet for _ in control_mode])
367
+ # breakpoint()
368
+ rgb_normal_grid = multi_view_rgb_normal_generation_with_controlnet(
369
+ prompt= ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', image_caption]),
370
+ image=lrm_3D_bundle_image,
371
+ strength=0.6,
372
+ control_image=control_image,
373
+ control_mode=control_mode,
374
+ control_guidance_start=control_guidance_start,
375
+ control_guidance_end=control_guidance_end,
376
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
377
+ lora_scale=1.0
378
+ ) # noted that rgb_normal_grid is a (b, h, w, c) numpy array
379
+
380
+ rgb_normal_grid = torch.from_numpy(rgb_normal_grid).contiguous().float()
381
+ rgb_normal_grid = rearrange(rgb_normal_grid.squeeze(0), '(n h) (m w) c-> (n m) c h w', n=2, m=4) # (8, 3, 512, 512)
382
+ rgb_multi_view = rgb_normal_grid[:4, :3, :, :].cuda()
383
+ normal_multi_view = rgb_normal_grid[4:, :3, :, :].cuda()
384
+ multi_view_mask = get_background(normal_multi_view).cuda()
385
+ rgb_multi_view = rgb_multi_view * multi_view_mask + (1-multi_view_mask)
386
+
387
+ # local normal to global normal
388
+ global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1).cpu(), isomer_azimuths, isomer_elevations).cuda()
389
+
390
+ global_normal = global_normal * multi_view_mask + (1-multi_view_mask)
391
+
392
+ global_normal = global_normal.permute(0,2,3,1)
393
+ multi_view_mask = multi_view_mask.squeeze(1)
394
+ rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
395
+ # global_normal: B,H,W,3
396
+ # multi_view_mask: B,H,W
397
+ # rgb_multi_view: B,H,W,3
398
+
399
+
400
+ meshes = reconstruction(
401
+ normal_pils=global_normal,
402
+ masks=multi_view_mask,
403
+ weights=isomer_geo_weights,
404
+ fov=30,
405
+ radius=isomer_radius,
406
+ camera_angles_azi=isomer_azimuths,
407
+ camera_angles_ele=isomer_elevations,
408
+ expansion_weight_stage1=0.1,
409
+ init_type="file",
410
+ init_verts=vertices,
411
+ init_faces=faces,
412
+ stage1_steps=0,
413
+ stage2_steps=50,
414
+ start_edge_len_stage1=0.1,
415
+ end_edge_len_stage1=0.02,
416
+ start_edge_len_stage2=0.02,
417
+ end_edge_len_stage2=0.005,
418
+ )
419
+
420
+ save_glb_addr = projection(
421
+ meshes=meshes,
422
+ masks=multi_view_mask,
423
+ images=rgb_multi_view,
424
+ azimuths=isomer_azimuths,
425
+ elevations=isomer_elevations,
426
+ weights=isomer_color_weights,
427
+ fov=30,
428
+ radius=isomer_radius,
429
+ save_dir=f"{save_dir_path}/ISOMER/",
430
+ )
431
+ print(f'saved to {save_glb_addr}')
432
+
433
+
434
+
435
+ if __name__ == '__main__':
436
+ main()
pipeline/kiss3d_wrapper.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # The kiss3d pipeline wrapper for inference
2
+
3
+ import os
4
+ import numpy as np
5
+ import torch
6
+ import yaml
7
+ import uuid
8
+ from typing import Union, Any, Dict
9
+ from einops import rearrange
10
+ from PIL import Image
11
+
12
+ from pipeline.utils import logger, TMP_DIR, OUT_DIR
13
+ from pipeline.utils import lrm_reconstruct, isomer_reconstruct
14
+
15
+ import torch
16
+ import torchvision
17
+
18
+ # for reconstruction model
19
+ from omegaconf import OmegaConf
20
+ from models.lrm.utils.train_util import instantiate_from_config
21
+ from models.lrm.utils.render_utils import rotate_x, rotate_y
22
+ from utils.tool import get_background
23
+
24
+ # for florence2
25
+ from transformers import AutoProcessor, AutoModelForCausalLM
26
+
27
+ from diffusers import FluxPipeline, FluxControlNetImg2ImgPipeline, FluxImg2ImgPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
28
+ from diffusers.models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
29
+
30
+
31
+ def init_wrapper_from_config(config_path):
32
+ with open(config_path, 'r') as config_file:
33
+ config_ = yaml.load(config_file, yaml.FullLoader)
34
+
35
+ # init flux_pipeline
36
+ logger.info('==> Loading Flux model ...')
37
+ flux_device = config_['flux'].get('device', 'cpu')
38
+ flux_base_model_pth = config_['flux'].get('base_model', None)
39
+ flux_controlnet_pth = config_['flux'].get('controlnet', None)
40
+ flux_lora_pth = config_['flux'].get('lora', None)
41
+
42
+ # load flux model and controlnet
43
+ if flux_controlnet_pth is not None:
44
+ flux_controlnet = FluxControlNetModel.from_pretrained(flux_controlnet_pth)
45
+ flux_pipe = FluxControlNetImg2ImgPipeline.from_pretrained(flux_base_model_pth, controlnet=[flux_controlnet], \
46
+ torch_dtype=torch.bfloat16)
47
+ else:
48
+ flux_pipe = FluxImg2ImgPipeline(flux_base_model_pth, torch_dtype=torch.bfloat16)
49
+
50
+ # load lora weights
51
+ flux_pipe.load_lora_weights(flux_lora_pth)
52
+ flux_pipe.to(device=flux_device, dtype=torch.bfloat16)
53
+
54
+ # TODO: load redux model
55
+ # FluxPriorReduxPipeline.from_pretrained()
56
+
57
+ # TODO: load pulid model
58
+
59
+ # init multiview model
60
+ logger.info('==> Loading multiview diffusion model ...')
61
+ multiview_device = config_['multiview'].get('device', 'cpu')
62
+ multiview_pipeline = DiffusionPipeline.from_pretrained(
63
+ config_['multiview']['base_model'],
64
+ custom_pipeline=config_['multiview']['custom_pipeline'],
65
+ torch_dtype=torch.float16,
66
+ )
67
+ multiview_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
68
+ multiview_pipeline.scheduler.config, timestep_spacing='trailing'
69
+ )
70
+
71
+ unet_ckpt_path = config_['multiview'].get('unet', None)
72
+ if unet_ckpt_path is not None:
73
+ state_dict = torch.load(unet_ckpt_path, map_location='cpu')['state_dict']
74
+ state_dict = {k[10:]: v for k, v in state_dict.items() if k.startswith('unet.unet.')}
75
+ multiview_pipeline.unet.load_state_dict(state_dict, strict=True)
76
+
77
+ multiview_pipeline.to(multiview_device)
78
+
79
+ # load caption model
80
+ logger.info('==> Loading caption model ...')
81
+ caption_device = config_['caption'].get('device', 'cpu')
82
+ caption_model = AutoModelForCausalLM.from_pretrained(config_['caption']['base_model'], \
83
+ torch_dtype=torch.bfloat16, trust_remote_code=True).to(caption_device)
84
+ caption_processor = AutoProcessor.from_pretrained(config_['caption']['base_model'], trust_remote_code=True)
85
+
86
+ # load reconstruction model
87
+ logger.info('==> Loading reconstruction model ...')
88
+ recon_device = config_['reconstruction'].get('device', 'cpu')
89
+ recon_model_config = OmegaConf.load(config_['reconstruction']['model_config'])
90
+ recon_model = instantiate_from_config(recon_model_config.model_config)
91
+ # load recon model checkpoint
92
+ state_dict = torch.load(config_['reconstruction']['base_model'], map_location='cpu')['state_dict']
93
+ state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
94
+ recon_model.load_state_dict(state_dict, strict=True)
95
+ recon_model.to(recon_device)
96
+ recon_model.init_flexicubes_geometry(recon_device, fovy=50.0)
97
+ recon_model.eval()
98
+
99
+ return kiss3d_wrapper(
100
+ config = config_,
101
+ flux_pipeline = flux_pipe,
102
+ multiview_pipeline = multiview_pipeline,
103
+ caption_processor = caption_processor,
104
+ caption_model = caption_model,
105
+ reconstruction_model_config = recon_model_config,
106
+ reconstruction_model = recon_model,
107
+ )
108
+
109
+ class kiss3d_wrapper(object):
110
+ def __init__(self,
111
+ config: Dict,
112
+ flux_pipeline: Union[FluxPipeline, FluxControlNetImg2ImgPipeline],
113
+ multiview_pipeline: DiffusionPipeline,
114
+ caption_processor: AutoProcessor,
115
+ caption_model: AutoModelForCausalLM,
116
+ reconstruction_model_config: Any,
117
+ reconstruction_model: Any,
118
+ ):
119
+ self.config = config
120
+ self.flux_pipeline = flux_pipeline
121
+ self.multiview_pipeline = multiview_pipeline
122
+ self.caption_model = caption_model
123
+ self.caption_processor = caption_processor
124
+ self.recon_model_config = reconstruction_model_config
125
+ self.recon_model = reconstruction_model
126
+
127
+ self.renew_uuid()
128
+
129
+ def renew_uuid(self):
130
+ self.uuid = uuid.uuid4()
131
+
132
+ def context(self):
133
+ if self.config['use_zero_gpu']:
134
+ import spaces
135
+ return spaces.GPU()
136
+ else:
137
+ return torch.no_grad()
138
+
139
+ def get_image_caption(self, image):
140
+ """
141
+ image: PIL image or path of PIL image
142
+ """
143
+ torch_dtype = torch.bfloat16
144
+ caption_device = self.config['caption'].get('device', 'cpu')
145
+
146
+ if isinstance(image, str): # If image is a file path
147
+ image = Image.open(image).convert("RGB")
148
+ elif isinstance(image, Image):
149
+ image = image.convert("RGB")
150
+ else:
151
+ raise NotImplementedError('unexpected image type')
152
+
153
+ prompt = "<MORE_DETAILED_CAPTION>"
154
+ inputs = self.caption_processor(text=prompt, images=image, return_tensors="pt").to(caption_device, torch_dtype)
155
+
156
+ generated_ids = self.caption_model.generate(
157
+ input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
158
+ )
159
+
160
+ generated_text = self.caption_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
161
+ parsed_answer = self.caption_processor.post_process_generation(
162
+ generated_text, task=prompt, image_size=(image.width, image.height)
163
+ )
164
+ caption_text = parsed_answer["<MORE_DETAILED_CAPTION>"].replace("The image is ", "")
165
+ return caption_text
166
+
167
+ def generate_multiview(self, image):
168
+ with self.context():
169
+ mv_image = self.multiview_pipeline(image,
170
+ num_inference_steps=self.config['multiview']['num_inference_steps'],
171
+ width=512*2, height=512*2).images[0]
172
+ return mv_image
173
+
174
+ def reconstruct_from_multiview(self, mv_image):
175
+ """
176
+ mv_image: PIL.Image
177
+ """
178
+ recon_device = self.config['reconstruction'].get('device', 'cpu')
179
+
180
+ rgb_multi_view = np.asarray(mv_image, dtype=np.float32) / 255.0
181
+ rgb_multi_view = torch.from_numpy(rgb_multi_view).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
182
+ rgb_multi_view = rearrange(rgb_multi_view, 'c (n h) (m w) -> (n m) c h w', n=2, m=2).unsqueeze(0).to(recon_device)
183
+
184
+ with self.context():
185
+ vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
186
+ lrm_reconstruct(self.recon_model, self.recon_model_config.infer_config,
187
+ rgb_multi_view, name=self.uuid)
188
+
189
+ return vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo
190
+
191
+ def generate_reference_3D_bundle_image_zero123(self, image, save_intermediate_results=True):
192
+ """
193
+ input: image, PIL.Image
194
+ return: ref_3D_bundle_image, Tensor of shape (1, 3, 1024, 2048)
195
+ """
196
+ mv_image = self.generate_multiview(image)
197
+
198
+ if save_intermediate_results:
199
+ mv_image.save(os.path.join(TMP_DIR, f'{self.uuid}_mv_image.png'))
200
+
201
+ vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = self.reconstruct_from_multiview(mv_image)
202
+
203
+ ref_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
204
+
205
+ if save_intermediate_results:
206
+ save_path = os.path.join(TMP_DIR, f'{self.uuid}_ref_3d_bundle_image.png')
207
+ torchvision.utils.save_image(ref_3D_bundle_image, save_path)
208
+
209
+ logger.info(f"Save reference 3D bundle image to {save_path}")
210
+
211
+ return ref_3D_bundle_image, save_path
212
+
213
+ return ref_3D_bundle_image
214
+
215
+ def generate_3d_bundle_image_controlnet(self,
216
+ prompt,
217
+ image=None,
218
+ strength=1.0,
219
+ control_image=[],
220
+ control_mode=[],
221
+ control_guidance_start=None,
222
+ control_guidance_end=None,
223
+ controlnet_conditioning_scale=None,
224
+ lora_scale=1.0,
225
+ save_intermediate_results=True,
226
+ **kwargs):
227
+ control_mode_dict = {
228
+ 'canny': 0,
229
+ 'tile': 1,
230
+ 'depth': 2,
231
+ 'blur': 3,
232
+ 'pose': 4,
233
+ 'gray': 5,
234
+ 'lq': 6,
235
+ } # for https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union only
236
+
237
+ flux_device = self.config['flux'].get('device', 'cpu')
238
+ seed = self.config['flux'].get('seed', 0)
239
+
240
+ generator = torch.Generator(device=flux_device).manual_seed(seed)
241
+
242
+ hparam_dict = {
243
+ 'prompt': ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', prompt]),
244
+ 'image': image or torch.zeros((1, 3, 1024, 2048), dtype=torch.float32, device=flux_device),
245
+ 'strength': strength,
246
+ 'num_inference_steps': 30,
247
+ 'guidance_scale': 3.5,
248
+ 'num_images_per_prompt': 1,
249
+ 'width': 2048,
250
+ 'height': 1024,
251
+ 'output_type': 'np',
252
+ 'generator': generator,
253
+ 'joint_attention_kwargs': {"scale": lora_scale}
254
+ }
255
+ hparam_dict.update(kwargs)
256
+
257
+ # append controlnet hparams
258
+ if len(control_image) > 0:
259
+ assert isinstance(self.flux_pipeline, FluxControlNetImg2ImgPipeline)
260
+ assert len(control_mode) == len(control_image) # the count of image should be the same as control mode
261
+
262
+ flux_ctrl_net = self.flux_pipeline.controlnet.nets[0]
263
+ self.flux_pipeline.controlnet = FluxMultiControlNetModel([flux_ctrl_net for i in range(len(control_image))])
264
+
265
+ ctrl_hparams = {
266
+ 'control_mode': [control_mode_dict[mode_] for mode_ in control_mode],
267
+ 'control_image': control_image,
268
+ 'control_guidance_start': control_guidance_start or [0.0 for i in range(len(control_image))],
269
+ 'control_guidance_end': control_guidance_end or [1.0 for i in range(len(control_image))],
270
+ 'controlnet_conditioning_scale': controlnet_conditioning_scale or [1.0 for i in range(len(control_image))],
271
+ }
272
+
273
+ hparam_dict.update(ctrl_hparams)
274
+
275
+ with self.context():
276
+ gen_3d_bundle_image = self.flux_pipeline(**hparam_dict).images
277
+
278
+ gen_3d_bundle_image_ = torch.from_numpy(gen_3d_bundle_image).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
279
+
280
+ if save_intermediate_results:
281
+ save_path = os.path.join(TMP_DIR, f'{self.uuid}_gen_3d_bundle_image.png')
282
+ torchvision.utils.save_image(gen_3d_bundle_image_, save_path)
283
+ logger.info(f"Save generated 3D bundle image to {save_path}")
284
+ return gen_3d_bundle_image_, save_path
285
+
286
+ return gen_3d_bundle_image_
287
+
288
+
289
+ def generate_3d_bundle_image_text(self,
290
+ prompt,
291
+ image=None,
292
+ strength=1.0,
293
+ lora_scale=1.0,
294
+ num_inference_steps=30,
295
+ save_intermediate_results=True,
296
+ **kwargs):
297
+
298
+ """
299
+ return: gen_3d_bundle_image, torch.Tensor of shape (3, 1024, 2048), range [0., 1.]
300
+ """
301
+
302
+ if isinstance(self.flux_pipeline, FluxControlNetImg2ImgPipeline):
303
+ flux_pipeline = FluxImg2ImgPipeline(
304
+ scheduler = self.flux_pipeline.scheduler,
305
+ vae = self.flux_pipeline.vae,
306
+ text_encoder = self.flux_pipeline.text_encoder,
307
+ tokenizer = self.flux_pipeline.tokenizer,
308
+ text_encoder_2 = self.flux_pipeline.text_encoder_2,
309
+ tokenizer_2 = self.flux_pipeline.tokenizer_2,
310
+ transformer = self.flux_pipeline.transformer
311
+ )
312
+ else:
313
+ flux_pipeline = self.flux_pipeline
314
+
315
+ flux_device = self.config['flux'].get('device', 'cpu')
316
+ seed = self.config['flux'].get('seed', 0)
317
+
318
+ generator = torch.Generator(device=flux_device).manual_seed(seed)
319
+
320
+ hparam_dict = {
321
+ 'prompt': ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', prompt]),
322
+ 'image': image or torch.zeros((1, 3, 1024, 2048), dtype=torch.float32, device=flux_device),
323
+ 'strength': strength,
324
+ 'num_inference_steps': num_inference_steps,
325
+ 'guidance_scale': 3.5,
326
+ 'num_images_per_prompt': 1,
327
+ 'width': 2048,
328
+ 'height': 1024,
329
+ 'output_type': 'np',
330
+ 'generator': generator,
331
+ 'joint_attention_kwargs': {"scale": lora_scale}
332
+ }
333
+ hparam_dict.update(kwargs)
334
+
335
+ with self.context():
336
+ gen_3d_bundle_image = flux_pipeline(**hparam_dict).images
337
+
338
+ gen_3d_bundle_image_ = torch.from_numpy(gen_3d_bundle_image).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
339
+
340
+ if save_intermediate_results:
341
+ save_path = os.path.join(TMP_DIR, f'{self.uuid}_gen_3d_bundle_image.png')
342
+ torchvision.utils.save_image(gen_3d_bundle_image_, save_path)
343
+ logger.info(f"Save generated 3D bundle image to {save_path}")
344
+ return gen_3d_bundle_image_, save_path
345
+
346
+ return gen_3d_bundle_image_
347
+
348
+ def reconstruct_3d_bundle_image(self, image, save_intermediate_results=True):
349
+ """
350
+ image: torch.Tensor, range [0., 1.], (3, 1024, 2048)
351
+ """
352
+ recon_device = self.config['reconstruction'].get('device', 'cpu')
353
+
354
+ # split rgb and normal
355
+ images = rearrange(image, 'c (n h) (m w) -> (n m) c h w', n=2, m=4) # (3, 1024, 2048) -> (8, 3, 512, 512)
356
+ rgb_multi_view, normal_multi_view = images.chunk(2, dim=0)
357
+ multi_view_mask = get_background(normal_multi_view).to(recon_device)
358
+ rgb_multi_view = rgb_multi_view.to(recon_device) * multi_view_mask + (1 - multi_view_mask)
359
+
360
+ with self.context():
361
+ vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
362
+ lrm_reconstruct(self.recon_model, self.recon_model_config.infer_config,
363
+ rgb_multi_view.unsqueeze(0).to(recon_device), name=self.uuid,
364
+ input_camera_type='kiss3d', render_3d_bundle_image=save_intermediate_results,
365
+ render_azimuths=[0, 90, 180, 270])
366
+
367
+ if save_intermediate_results:
368
+ recon_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
369
+ torchvision.utils.save_image(recon_3D_bundle_image, os.path.join(TMP_DIR, f'{k3d_wrapper.uuid})_lrm_recon_3d_bundle_image.png'))
370
+
371
+ recon_mesh_path = os.path.join(TMP_DIR, f"{self.uuid}_isomer_recon_mesh.obj")
372
+
373
+ return isomer_reconstruct(rgb_multi_view=rgb_multi_view,
374
+ normal_multi_view=normal_multi_view,
375
+ multi_view_mask=multi_view_mask,
376
+ vertices=vertices,
377
+ faces=faces,
378
+ save_path=recon_mesh_path)
379
+
380
+
381
+ def run_text_to_3d(k3d_wrapper,
382
+ prompt,
383
+ init_image_path=None):
384
+ # ======================================= Example of text to 3D generation ======================================
385
+
386
+ # Renew The uuid
387
+ k3d_wrapper.renew_uuid()
388
+
389
+ # FOR Text to 3D (also for image to image) with init image
390
+ init_image = None
391
+ if init_image_path is not None:
392
+ init_image = Image.open(init_image_path)
393
+
394
+ gen_3d_bundle_image, gen_save_path = k3d_wrapper.generate_3d_bundle_image_text(prompt,
395
+ image=init_image,
396
+ strength=1.0,
397
+ save_intermediate_results=True)
398
+
399
+ # recon from 3D Bundle image
400
+ recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, save_intermediate_results=False)
401
+
402
+ return gen_save_path, recon_mesh_path
403
+
404
+ def run_image_to_3d(k3d_wrapper, init_image_path):
405
+ # ======================================= Example of image to 3D generation ======================================
406
+
407
+ # Renew The uuid
408
+ k3d_wrapper.renew_uuid()
409
+
410
+ # FOR IMAGE TO 3D: generate reference 3D bundle image from a single input image
411
+ input_image = Image.open(init_image_path)
412
+ reference_3d_bundle_image, reference_save_path = k3d_wrapper.generate_reference_3D_bundle_image_zero123(input_image)
413
+ caption = k3d_wrapper.get_image_caption(input_image)
414
+
415
+
416
+ import pdb
417
+ pdb.set_trace()
418
+
419
+
420
+ if __name__ == "__main__":
421
+ k3d_wrapper = init_wrapper_from_config('/hpc2hdd/home/jlin695/code/Kiss3DGen/pipeline/pipeline_config/default.yaml')
422
+
423
+ # Example of loading existing 3D bundle Image
424
+ # demo_image = Image.open('/hpc2hdd/home/jlin695/code/github/Kiss3DGen/outputs/tmp/ea25bc9b-d775-46bb-9827-660a9a6540c8_gen_3d_bundle_image.png')
425
+ # gen_3d_bundle_image = torchvision.transforms.functional.to_tensor(demo_image)
426
+
427
+ run_image_to_3d(k3d_wrapper, '/hpc2hdd/home/jlin695/code/Kiss3DGen/examples/蓝色小怪物.webp')
428
+ # run_text_to_3d(k3d_wrapper, prompt='A doll of a girl in Harry Potter')
429
+
pipeline/pipeline_config/default.yaml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ flux:
2
+ base_model: "/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/models--black-forest-labs--FLUX.1-dev"
3
+ lora: "./checkpoint/flux_lora/rgb_normal_doll_object.safetensors"
4
+ controlnet: "/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/flux_controlnets/FLUX.1-dev-ControlNet-Union-Pro"
5
+ seed: 0
6
+ device: 'cuda:0'
7
+
8
+ multiview:
9
+ base_model: "sudo-ai/zero123plus-v1.2"
10
+ custom_pipeline: "./models/zero123plus"
11
+ unet: "./checkpoint/zero123++/flexgen_19w.ckpt"
12
+ num_inference_steps: 75
13
+ device: 'cuda:0'
14
+
15
+ reconstruction:
16
+ model_config: "./models/lrm/config/PRM_inference.yaml"
17
+ base_model: "./checkpoint/lrm/final_ckpt.ckpt"
18
+ device: 'cuda:0'
19
+
20
+ caption:
21
+ base_model: "/hpc2hdd/home/jlin695/.cache/huggingface/hub/models--multimodalart--Florence-2-large-no-flash-attn/snapshots/8db3793cf5b453b2ccfb3a4f613b403b2e6b7ca2"
22
+ device: 'cuda:0'
23
+
24
+ use_zero_gpu: false # for huggingface demo only
25
+ 3d_bundle_templates: '/hpc2hdd/home/jlin695/code/github/Kiss3DGen/init_3d_Bundle'
pipeline/run_hpc.sh ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ source /hpc2ssd/softwares/anaconda3/bin/activate kiss3dgen
2
+ module load cuda/12.1 compilers/gcc-11.1.0 compilers/icc-2023.1.0 cmake/3.27.0
3
+ export CXX=$(which g++)
4
+ export CC=$(which gcc)
5
+ export CPLUS_INCLUDE_PATH=/hpc2ssd/softwares/cuda/cuda-12.1/targets/x86_64-linux/include:$CPLUS_INCLUDE_PATH
6
+ export CUDA_LAUNCH_BLOCKING=1
7
+ export NCCL_TIMEOUT=3600
8
+ export CUDA_VISIBLE_DEVICES="0"
9
+
10
+ python ./pipeline/kiss3d_wrapper.py
pipeline/utils.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import logging
4
+
5
+ __workdir__ = '/'.join(os.path.abspath(__file__).split('/')[:-2])
6
+ sys.path.insert(0, __workdir__)
7
+
8
+ print(__workdir__)
9
+
10
+ import numpy as np
11
+ import torch
12
+ from torchvision.transforms import v2
13
+
14
+ from models.lrm.online_render.render_single import load_mipmap
15
+ from models.lrm.utils.camera_util import get_zero123plus_input_cameras, get_custom_zero123plus_input_cameras, get_flux_input_cameras
16
+ from models.lrm.utils.render_utils import rotate_x, rotate_y
17
+ from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
18
+
19
+ from models.ISOMER.reconstruction_func import reconstruction
20
+ from models.ISOMER.projection_func import projection
21
+
22
+ from utils.tool import NormalTransfer, get_render_cameras_frames, get_background, get_render_cameras_video, render_frames, mask_fix
23
+
24
+
25
+ logging.basicConfig(
26
+ level = logging.INFO
27
+ )
28
+ logger = logging.getLogger('kiss3d_wrapper')
29
+
30
+ OUT_DIR = './outputs'
31
+ TMP_DIR = './outputs/tmp'
32
+
33
+ os.makedirs(TMP_DIR, exist_ok=True)
34
+
35
+ def lrm_reconstruct(model, infer_config, images,
36
+ name='', export_texmap=False,
37
+ input_camera_type='zero123',
38
+ render_3d_bundle_image=True,
39
+ render_azimuths=[270, 0, 90, 180],
40
+ render_elevations=[5, 5, 5, 5],
41
+ render_radius=4.5):
42
+ """
43
+ image: Tensor, shape (1, c, h, w)
44
+ """
45
+
46
+ mesh_path_idx = os.path.join(TMP_DIR, f'{name}_recon_from_{input_camera_type}.obj')
47
+
48
+ device = images.device
49
+ if input_camera_type == 'zero123':
50
+ input_cameras = get_custom_zero123plus_input_cameras(batch_size=1, radius=3.5, fov=30).to(device)
51
+ elif input_camera_type == 'kiss3d':
52
+ input_cameras = get_flux_input_cameras(batch_size=1, radius=4.2, fov=30).to(device)
53
+ else:
54
+ raise NotImplementedError(f'Unexpected input camera type: {input_camera_type}')
55
+
56
+ images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
57
+
58
+ logger.info(f"==> Runing LRM reconstruction ...")
59
+ planes = model.forward_planes(images, input_cameras)
60
+ mesh_out = model.extract_mesh(
61
+ planes,
62
+ use_texture_map=export_texmap,
63
+ **infer_config,
64
+ )
65
+ if export_texmap:
66
+ vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
67
+ save_obj_with_mtl(
68
+ vertices.data.cpu().numpy(),
69
+ uvs.data.cpu().numpy(),
70
+ faces.data.cpu().numpy(),
71
+ mesh_tex_idx.data.cpu().numpy(),
72
+ tex_map.permute(1, 2, 0).data.cpu().numpy(),
73
+ mesh_path_idx,
74
+ )
75
+ else:
76
+ vertices, faces, vertex_colors = mesh_out
77
+ save_obj(vertices, faces, vertex_colors, mesh_path_idx)
78
+ logger.info(f"Mesh saved to {mesh_path_idx}")
79
+
80
+ if render_3d_bundle_image:
81
+ assert render_azimuths is not None and render_elevations is not None and render_radius is not None
82
+ render_azimuths = torch.Tensor(render_azimuths).to(device)
83
+ render_elevations = torch.Tensor(render_elevations).to(device)
84
+
85
+ render_size = infer_config.render_resolution
86
+ ENV = load_mipmap("models/lrm/env_mipmap/6")
87
+ materials = (0.0,0.9)
88
+ all_mv, all_mvp, all_campos, identity_mv = get_render_cameras_frames(
89
+ batch_size=1,
90
+ radius=render_radius,
91
+ azimuths=render_azimuths,
92
+ elevations=render_elevations,
93
+ fov=30
94
+ )
95
+ frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
96
+ model,
97
+ planes,
98
+ render_cameras=all_mvp,
99
+ camera_pos=all_campos,
100
+ env=ENV,
101
+ materials=materials,
102
+ render_size=render_size,
103
+ render_mv = all_mv,
104
+ local_normal=True,
105
+ identity_mv=identity_mv,
106
+ )
107
+ else:
108
+ normals = None
109
+ frames = None
110
+ albedos = None
111
+
112
+
113
+ vertices = torch.from_numpy(vertices).to(device)
114
+ faces = torch.from_numpy(faces).to(device)
115
+ vertices = vertices @ rotate_x(np.pi / 2, device=device)[:3, :3]
116
+ vertices = vertices @ rotate_y(np.pi / 2, device=device)[:3, :3]
117
+
118
+ return vertices.cpu(), faces.cpu(), normals, frames, albedos
119
+
120
+ normal_transfer = NormalTransfer()
121
+
122
+ def local_normal_global_transform(local_normal_images,azimuths_deg,elevations_deg):
123
+ if local_normal_images.min() >= 0:
124
+ local_normal = local_normal_images.float() * 2 - 1
125
+ else:
126
+ local_normal = local_normal_images.float()
127
+ global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
128
+ global_normal[...,0] *= -1
129
+ global_normal = (global_normal + 1) / 2
130
+ global_normal = global_normal.permute(0, 3, 1, 2)
131
+ return global_normal
132
+
133
+
134
+ def isomer_reconstruct(
135
+ rgb_multi_view,
136
+ normal_multi_view,
137
+ multi_view_mask,
138
+ vertices,
139
+ faces,
140
+ save_path=None,
141
+ azimuths=[0, 90, 180, 270],
142
+ elevations=[5, 5, 5, 5],
143
+ geo_weights=[1, 0.9, 1, 0.9],
144
+ color_weights=[1, 0.5, 1, 0.5],
145
+ reconstruction_stage1_steps=50,
146
+ reconstruction_stage2_steps=50,
147
+ radius=4.1):
148
+
149
+ device = rgb_multi_view.device
150
+ to_tensor_ = lambda x: torch.Tensor(x).float().to(device)
151
+
152
+ # local normal to global normal
153
+ global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1).cpu(), to_tensor_(azimuths), to_tensor_(elevations)).to(device)
154
+ global_normal = global_normal * multi_view_mask + (1-multi_view_mask)
155
+
156
+ global_normal = global_normal.permute(0,2,3,1)
157
+ multi_view_mask = multi_view_mask.squeeze(1)
158
+ rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
159
+
160
+ logger.info(f"==> Runing ISOMER reconstruction ...")
161
+ meshes = reconstruction(
162
+ normal_pils=global_normal,
163
+ masks=multi_view_mask,
164
+ weights=to_tensor_(geo_weights),
165
+ fov=30,
166
+ radius=radius,
167
+ camera_angles_azi=to_tensor_(azimuths),
168
+ camera_angles_ele=to_tensor_(elevations),
169
+ expansion_weight_stage1=0.1,
170
+ init_type="file",
171
+ init_verts=vertices,
172
+ init_faces=faces,
173
+ stage1_steps=reconstruction_stage1_steps,
174
+ stage2_steps=reconstruction_stage2_steps,
175
+ start_edge_len_stage1=0.1,
176
+ end_edge_len_stage1=0.02,
177
+ start_edge_len_stage2=0.02,
178
+ end_edge_len_stage2=0.005,
179
+ )
180
+
181
+ multi_view_mask_proj = mask_fix(multi_view_mask, erode_dilate=-10, blur=5)
182
+
183
+ logger.info(f"==> Runing ISOMER projection ...")
184
+ save_glb_addr = projection(
185
+ meshes,
186
+ masks=multi_view_mask_proj.to(device),
187
+ images=rgb_multi_view.to(device),
188
+ azimuths=to_tensor_(azimuths),
189
+ elevations=to_tensor_(elevations),
190
+ weights=to_tensor_(color_weights),
191
+ fov=30,
192
+ radius=radius,
193
+ save_dir=TMP_DIR,
194
+ save_glb_addr=save_path
195
+ )
196
+
197
+ logger.info(f"==> Save mesh to {save_glb_addr} ...")
198
+ return save_glb_addr
run.sh ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ export CUDA_VISIBLE_DEVICES="0"
2
+ python text_to_mesh.py
run_hpc.sh ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ source /hpc2ssd/softwares/anaconda3/bin/activate kiss3dgen
2
+ module load cuda/12.1 compilers/gcc-11.1.0 compilers/icc-2023.1.0 cmake/3.27.0
3
+ export CXX=$(which g++)
4
+ export CC=$(which gcc)
5
+ export CPLUS_INCLUDE_PATH=/hpc2ssd/softwares/cuda/cuda-12.1/targets/x86_64-linux/include:$CPLUS_INCLUDE_PATH
6
+ export CUDA_LAUNCH_BLOCKING=1
7
+ export NCCL_TIMEOUT=3600
8
+ export CUDA_VISIBLE_DEVICES="0"
9
+ # python app.py
10
+ python text_to_mesh.py
11
+ # python image_to_mesh.py
text_to_mesh_new.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from einops import rearrange
3
+ from omegaconf import OmegaConf
4
+ import torch
5
+ import numpy as np
6
+ import trimesh
7
+ import torchvision
8
+ import torch.nn.functional as F
9
+ from PIL import Image
10
+ from torchvision import transforms
11
+ from torchvision.transforms import v2
12
+ from diffusers import HeunDiscreteScheduler
13
+ from diffusers import FluxPipeline
14
+ from pytorch_lightning import seed_everything
15
+ import os
16
+
17
+ import time
18
+
19
+ from models.lrm.utils.infer_util import save_video
20
+ from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
21
+ from models.lrm.utils.render_utils import rotate_x, rotate_y
22
+ from models.lrm.utils.train_util import instantiate_from_config
23
+ from models.lrm.utils.camera_util import get_flux_input_cameras
24
+ from models.ISOMER.reconstruction_func import reconstruction
25
+ from models.ISOMER.projection_func import projection
26
+ from utils.tool import NormalTransfer, load_mipmap
27
+ from utils.tool import get_background, get_render_cameras_video, render_frames, mask_fix
28
+
29
+ device = "cuda"
30
+ resolution = 512
31
+ save_dir = "./outputs/text2"
32
+ normal_transfer = NormalTransfer()
33
+ isomer_azimuths = torch.from_numpy(np.array([0, 90, 180, 270])).float().to(device)
34
+ isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).float().to(device)
35
+ isomer_radius = 4.5
36
+ isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device)
37
+ isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device)
38
+
39
+ # model initialization and loading
40
+ # flux
41
+ flux_pipe = FluxPipeline.from_pretrained("/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/models--black-forest-labs--FLUX.1-dev", torch_dtype=torch.bfloat16).to(device=device, dtype=torch.bfloat16)
42
+ flux_pipe.load_lora_weights('./checkpoint/flux_lora/rgb_normal_large.safetensors')
43
+
44
+ flux_pipe.to(device=device, dtype=torch.bfloat16)
45
+ generator = torch.Generator(device=device).manual_seed(10)
46
+
47
+ # lrm
48
+ config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
49
+ model_config = config.model_config
50
+ infer_config = config.infer_config
51
+ model = instantiate_from_config(model_config)
52
+ model_ckpt_path = "./checkpoint/lrm/final_ckpt.ckpt"
53
+ state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
54
+ state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
55
+ model.load_state_dict(state_dict, strict=True)
56
+
57
+ model = model.to(device)
58
+ model.init_flexicubes_geometry(device, fovy=50.0)
59
+ model = model.eval()
60
+
61
+ # Flux multi-view generation
62
+ def multi_view_rgb_normal_generation(prompt, save_path=None):
63
+ # generate multi-view images
64
+ with torch.no_grad():
65
+ image = flux_pipe(
66
+ prompt=prompt,
67
+ num_inference_steps=30,
68
+ guidance_scale=3.5,
69
+ num_images_per_prompt=1,
70
+ width=resolution*4,
71
+ height=resolution*2,
72
+ output_type='np',
73
+ generator=generator
74
+ ).images
75
+ return image
76
+
77
+ # lrm reconstructions
78
+ def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False):
79
+ images = image.unsqueeze(0).to(device)
80
+ images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
81
+ # breakpoint()
82
+ with torch.no_grad():
83
+ # get triplane
84
+ planes = model.forward_planes(images, input_cameras)
85
+
86
+ mesh_path_idx = os.path.join(save_path, f'{name}.obj')
87
+
88
+ mesh_out = model.extract_mesh(
89
+ planes,
90
+ use_texture_map=export_texmap,
91
+ **infer_config,
92
+ )
93
+ if export_texmap:
94
+ vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
95
+ save_obj_with_mtl(
96
+ vertices.data.cpu().numpy(),
97
+ uvs.data.cpu().numpy(),
98
+ faces.data.cpu().numpy(),
99
+ mesh_tex_idx.data.cpu().numpy(),
100
+ tex_map.permute(1, 2, 0).data.cpu().numpy(),
101
+ mesh_path_idx,
102
+ )
103
+ else:
104
+ vertices, faces, vertex_colors = mesh_out
105
+ save_obj(vertices, faces, vertex_colors, mesh_path_idx)
106
+ print(f"Mesh saved to {mesh_path_idx}")
107
+
108
+ render_size = 512
109
+ if if_save_video:
110
+ video_path_idx = os.path.join(save_path, f'{name}.mp4')
111
+ render_size = infer_config.render_resolution
112
+ ENV = load_mipmap("models/lrm/env_mipmap/6")
113
+ materials = (0.0,0.9)
114
+
115
+ all_mv, all_mvp, all_campos = get_render_cameras_video(
116
+ batch_size=1,
117
+ M=240,
118
+ radius=4.5,
119
+ elevation=(90, 60.0),
120
+ is_flexicubes=True,
121
+ fov=30
122
+ )
123
+
124
+ frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
125
+ model,
126
+ planes,
127
+ render_cameras=all_mvp,
128
+ camera_pos=all_campos,
129
+ env=ENV,
130
+ materials=materials,
131
+ render_size=render_size,
132
+ chunk_size=20,
133
+ is_flexicubes=True,
134
+ )
135
+ normals = (torch.nn.functional.normalize(normals) + 1) / 2
136
+ normals = normals * alphas + (1-alphas)
137
+ all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
138
+
139
+ save_video(
140
+ all_frames,
141
+ video_path_idx,
142
+ fps=30,
143
+ )
144
+ print(f"Video saved to {video_path_idx}")
145
+
146
+ return vertices, faces
147
+
148
+
149
+ def local_normal_global_transform(local_normal_images, azimuths_deg, elevations_deg):
150
+ if local_normal_images.min() >= 0:
151
+ local_normal = local_normal_images.float() * 2 - 1
152
+ else:
153
+ local_normal = local_normal_images.float()
154
+ global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
155
+ global_normal[...,0] *= -1
156
+ global_normal = (global_normal + 1) / 2
157
+ global_normal = global_normal.permute(0, 3, 1, 2)
158
+ return global_normal
159
+
160
+ def main(prompt = "a owl wearing a hat."):
161
+ fix_prompt = 'a grid of 2x4 multi-view image. elevation 5. white background.'
162
+ # user prompt
163
+
164
+ save_dir_path = os.path.join(save_dir, prompt.split(".")[0].replace(" ", "_"))
165
+ os.makedirs(save_dir_path, exist_ok=True)
166
+ prompt = fix_prompt+" "+prompt
167
+ # generate multi-view images
168
+ rgb_normal_grid = multi_view_rgb_normal_generation(prompt)
169
+ # lrm reconstructions
170
+ images = torch.from_numpy(rgb_normal_grid).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
171
+ images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=2, m=4) # (8, 3, 512, 512)
172
+ rgb_multi_view = images[:4, :3, :, :]
173
+ normal_multi_view = images[4:, :3, :, :]
174
+ multi_view_mask = get_background(normal_multi_view)
175
+ rgb_multi_view = rgb_multi_view * rgb_multi_view + (1-multi_view_mask)
176
+ input_cameras = get_flux_input_cameras(batch_size=1, radius=4.2, fov=30).to(device)
177
+ vertices, faces = lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm', export_texmap=False, if_save_video=False)
178
+ # local normal to global normal
179
+
180
+ global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1), isomer_azimuths, isomer_elevations)
181
+ global_normal = global_normal * multi_view_mask + (1-multi_view_mask)
182
+
183
+ global_normal = global_normal.permute(0,2,3,1)
184
+ rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
185
+ multi_view_mask = multi_view_mask.permute(0,2,3,1).squeeze(-1)
186
+ vertices = torch.from_numpy(vertices).to(device)
187
+ faces = torch.from_numpy(faces).to(device)
188
+ vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3]
189
+ vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3]
190
+
191
+ # global_normal: B,H,W,3
192
+ # multi_view_mask: B,H,W
193
+ # rgb_multi_view: B,H,W,3
194
+
195
+ multi_view_mask_proj = mask_fix(multi_view_mask, erode_dilate=-6, blur=5)
196
+
197
+ meshes = reconstruction(
198
+ normal_pils=global_normal,
199
+ masks=multi_view_mask,
200
+ weights=isomer_geo_weights,
201
+ fov=30,
202
+ radius=isomer_radius,
203
+ camera_angles_azi=isomer_azimuths,
204
+ camera_angles_ele=isomer_elevations,
205
+ expansion_weight_stage1=0.1,
206
+ init_type="file",
207
+ init_verts=vertices,
208
+ init_faces=faces,
209
+ stage1_steps=0,
210
+ stage2_steps=50,
211
+ start_edge_len_stage1=0.1,
212
+ end_edge_len_stage1=0.02,
213
+ start_edge_len_stage2=0.02,
214
+ end_edge_len_stage2=0.005,
215
+ )
216
+
217
+
218
+ multi_view_mask_proj = mask_fix(multi_view_mask, erode_dilate=-10, blur=5)
219
+
220
+ save_glb_addr = projection(
221
+ meshes,
222
+ masks=multi_view_mask_proj,
223
+ images=rgb_multi_view,
224
+ azimuths=isomer_azimuths,
225
+ elevations=isomer_elevations,
226
+ weights=isomer_color_weights,
227
+ fov=30,
228
+ radius=isomer_radius,
229
+ save_dir=f"{save_dir_path}/ISOMER/",
230
+ )
231
+ print(f'saved to {save_glb_addr}')
232
+
233
+
234
+
235
+ if __name__ == '__main__':
236
+ import time
237
+ start_time = time.time()
238
+ prompts = ["A red dragon soaring", "A running Chihuahua", "A dancing rabbit", "A girl with blue hair and white dress", "A teacher", "A tiger playing guitar", "A red rose", "A red peony", "A rose in a vase", "A golden retriever sitting", "A golden retriever running"]
239
+ for prompt in prompts:
240
+ main(prompt)
241
+ end_time = time.time()
242
+ print(f"Time taken: {end_time - start_time:.2f} seconds for {len(prompts)} prompts")
243
+
244
+ breakpoint()
upload_huggingface.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import HfApi, HfFolder, Repository, create_repo, upload_file
2
+ import os
3
+
4
+ # 登录到 Hugging Face
5
+ from huggingface_hub import login
6
+ login()
7
+
8
+ # 创建或指定现有的 Repository
9
+ repo_name = "xxx-ckpt"
10
+ username = "LTT"
11
+ repo_id = f"{username}/{repo_name}"
12
+
13
+ # 创建仓库(如果它不存在)
14
+ create_repo(repo_id, exist_ok=True)
15
+
16
+ # 文件夹
17
+ # 上传整个文件夹
18
+ def upload_folder(folder_path, repo_id):
19
+ """
20
+ 递归上传文件夹及其内容到 Hugging Face 仓库。
21
+ """
22
+ for root, _, files in os.walk(folder_path):
23
+ for file in files:
24
+ # 文件完整路径
25
+ full_file_path = os.path.join(root, file)
26
+ # 相对于文件夹的相对路径(保留文件夹结构)
27
+ relative_path = os.path.relpath(full_file_path, folder_path)
28
+
29
+ # 上传文件到仓库
30
+ print(f"Uploading {relative_path}...")
31
+ upload_file(
32
+ path_or_fileobj=full_file_path,
33
+ path_in_repo=relative_path,
34
+ repo_id=repo_id
35
+ )
36
+ print(f"Uploaded {relative_path} successfully.")
37
+
38
+
39
+ # 上传模型文件
40
+ model_path = "checkpoint/zero123++/flexgen_19w.ckpt"
41
+ upload_file(path_or_fileobj=model_path, path_in_repo="flexgen_19w.ckpt", repo_id=repo_id)
42
+
43
+ # # 上传数据文件
44
+ # data_path = "/hpc2hdd/home/jlin695/data/env_map/data/env_mipmap_large.tar.gz"
45
+ # upload_file(path_or_fileobj=data_path, path_in_repo="env_mipmap_large.tar.gz", repo_id=repo_id)
46
+
47
+ # # 上传数据文件
48
+ # data_path = "/hpc2hdd/home/jlin695/data/env_map/data/env_map_light_large.tar.gz"
49
+ # upload_file(path_or_fileobj=data_path, path_in_repo="env_map_light_large.tar.gz", repo_id=repo_id)
50
+
51
+ # # 定义要上传的文件夹路径
52
+ # folder_path = "checkpoint/flux_lora"
53
+
54
+ # # 调用上传文件夹的函数
55
+ # upload_folder(folder_path, repo_id)
56
+
57
+ # print("模型和数据文件已上传到 Hugging Face。")