Kiss3DGen / app.py
LTT's picture
Update app.py
77f3fce verified
raw
history blame
15.2 kB
import gradio as gr
import os
import subprocess
import shlex
import spaces
import torch
access_token = os.getenv("HUGGINGFACE_TOKEN")
subprocess.run(
shlex.split(
"pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/nvdiffrast-0.3.1+torch-py3-none-any.whl --force-reinstall --no-deps"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/renderutils_plugin-1.0.0-py3-none-any.whl --force-reinstall --no-deps"
)
)
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
print("==> finfish install")
install_cuda_toolkit()
@spaces.GPU
def check_gpu():
os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1'
os.environ['PATH'] += ':/usr/local/cuda-12.1/bin'
# os.environ['LD_LIBRARY_PATH'] += ':/usr/local/cuda-12.1/lib64'
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
subprocess.run(['nvidia-smi']) # 测试 CUDA 是否可用
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
check_gpu()
from PIL import Image
from einops import rearrange
from diffusers import FluxPipeline
from models.lrm.utils.camera_util import get_flux_input_cameras
from models.lrm.utils.infer_util import save_video
from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
from models.lrm.utils.render_utils import rotate_x, rotate_y
from models.lrm.utils.train_util import instantiate_from_config
from models.ISOMER.reconstruction_func import reconstruction
from models.ISOMER.projection_func import projection
import os
from einops import rearrange
from omegaconf import OmegaConf
import torch
import numpy as np
import trimesh
import torchvision
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from torchvision.transforms import v2
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers import FluxPipeline
from pytorch_lightning import seed_everything
import os
from huggingface_hub import hf_hub_download
from utils.tool import NormalTransfer, get_background, get_render_cameras_video, load_mipmap, render_frames
device_0 = "cuda"
device_1 = "cuda"
resolution = 512
save_dir = "./outputs"
normal_transfer = NormalTransfer()
isomer_azimuths = torch.from_numpy(np.array([0, 90, 180, 270])).float().to(device_1)
isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).float().to(device_1)
isomer_radius = 4.5
isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device_1)
isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device_1)
# model initialization and loading
# flux
# # taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device_0)
# # good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=access_token).to(device_0)
# flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=access_token).to(device=device_0, dtype=torch.bfloat16)
# # flux_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, vae=taef1, token=access_token).to(device_0)
# flux_lora_ckpt_path = hf_hub_download(repo_id="LTT/xxx-ckpt", filename="rgb_normal_large.safetensors", repo_type="model", token=access_token)
# flux_pipe.load_lora_weights(flux_lora_ckpt_path)
# flux_pipe.to(device=device_0, dtype=torch.bfloat16)
# torch.cuda.empty_cache()
# flux_pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(flux_pipe)
# lrm
config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
model_config = config.model_config
infer_config = config.infer_config
model = instantiate_from_config(model_config)
model_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="final_ckpt.ckpt", repo_type="model")
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)
model = model.to(device_1)
torch.cuda.empty_cache()
@spaces.GPU
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False):
images = image.unsqueeze(0).to(device_1)
images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
# breakpoint()
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras)
mesh_path_idx = os.path.join(save_path, f'{name}.obj')
mesh_out = model.extract_mesh(
planes,
use_texture_map=export_texmap,
**infer_config,
)
if export_texmap:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map.permute(1, 2, 0).data.cpu().numpy(),
mesh_path_idx,
)
else:
vertices, faces, vertex_colors = mesh_out
save_obj(vertices, faces, vertex_colors, mesh_path_idx)
print(f"Mesh saved to {mesh_path_idx}")
render_size = 512
if if_save_video:
video_path_idx = os.path.join(save_path, f'{name}.mp4')
render_size = infer_config.render_resolution
ENV = load_mipmap("models/lrm/env_mipmap/6")
materials = (0.0,0.9)
all_mv, all_mvp, all_campos = get_render_cameras_video(
batch_size=1,
M=240,
radius=4.5,
elevation=(90, 60.0),
is_flexicubes=True,
fov=30
)
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
model,
planes,
render_cameras=all_mvp,
camera_pos=all_campos,
env=ENV,
materials=materials,
render_size=render_size,
chunk_size=20,
is_flexicubes=True,
)
normals = (torch.nn.functional.normalize(normals) + 1) / 2
normals = normals * alphas + (1-alphas)
all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
save_video(
all_frames,
video_path_idx,
fps=30,
)
print(f"Video saved to {video_path_idx}")
return vertices, faces
def local_normal_global_transform(local_normal_images, azimuths_deg, elevations_deg):
if local_normal_images.min() >= 0:
local_normal = local_normal_images.float() * 2 - 1
else:
local_normal = local_normal_images.float()
global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
global_normal[...,0] *= -1
global_normal = (global_normal + 1) / 2
global_normal = global_normal.permute(0, 3, 1, 2)
return global_normal
# 生成多视图图像
@spaces.GPU(duration=120)
def generate_multi_view_images(prompt, seed):
# torch.cuda.empty_cache()
# generator = torch.manual_seed(seed)
generator = torch.Generator().manual_seed(seed)
with torch.no_grad():
img = flux_pipe(
prompt=prompt,
num_inference_steps=5,
guidance_scale=3.5,
num_images_per_prompt=1,
width=resolution * 2,
height=resolution * 1,
output_type='np',
generator=generator,
).images
# for img in flux_pipe.flux_pipe_call_that_returns_an_iterable_of_images(
# prompt=prompt,
# guidance_scale=3.5,
# num_inference_steps=4,
# width=resolution * 4,
# height=resolution * 2,
# generator=generator,
# output_type="np",
# good_vae=good_vae,
# ):
# pass
# 返回最终的图像和种子(通过外部调用处理)
return img
# 重建 3D 模型
@spaces.GPU
def reconstruct_3d_model(images, prompt):
global model
model.init_flexicubes_geometry(device_1, fovy=50.0)
model = model.eval()
rgb_normal_grid = images
save_dir_path = os.path.join(save_dir, prompt.replace(" ", "_"))
os.makedirs(save_dir_path, exist_ok=True)
images = torch.from_numpy(rgb_normal_grid).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=2, m=4) # (8, 3, 512, 512)
rgb_multi_view = images[:4, :3, :, :]
normal_multi_view = images[4:, :3, :, :]
multi_view_mask = get_background(normal_multi_view)
rgb_multi_view = rgb_multi_view * rgb_multi_view + (1-multi_view_mask)
input_cameras = get_flux_input_cameras(batch_size=1, radius=4.2, fov=30).to(device_1)
vertices, faces = lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm', export_texmap=False, if_save_video=True)
# local normal to global normal
global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1), isomer_azimuths, isomer_elevations)
global_normal = global_normal * multi_view_mask + (1-multi_view_mask)
global_normal = global_normal.permute(0,2,3,1)
rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
multi_view_mask = multi_view_mask.permute(0,2,3,1).squeeze(-1)
vertices = torch.from_numpy(vertices).to(device_1)
faces = torch.from_numpy(faces).to(device_1)
vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3]
vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3]
# global_normal: B,H,W,3
# multi_view_mask: B,H,W
# rgb_multi_view: B,H,W,3
meshes = reconstruction(
normal_pils=global_normal,
masks=multi_view_mask,
weights=isomer_geo_weights,
fov=30,
radius=isomer_radius,
camera_angles_azi=isomer_azimuths,
camera_angles_ele=isomer_elevations,
expansion_weight_stage1=0.1,
init_type="file",
init_verts=vertices,
init_faces=faces,
stage1_steps=0,
stage2_steps=50,
start_edge_len_stage1=0.1,
end_edge_len_stage1=0.02,
start_edge_len_stage2=0.02,
end_edge_len_stage2=0.005,
)
save_glb_addr = projection(
meshes,
masks=multi_view_mask,
images=rgb_multi_view,
azimuths=isomer_azimuths,
elevations=isomer_elevations,
weights=isomer_color_weights,
fov=30,
radius=isomer_radius,
save_dir=f"{save_dir_path}/ISOMER/",
)
return save_glb_addr
# Gradio 接口函数
@spaces.GPU
def gradio_pipeline(prompt, seed):
import ctypes
# 显式加载 libnvrtc.so.12
cuda_lib_path = "/usr/local/cuda-12.1/lib64/libnvrtc.so.12"
try:
ctypes.CDLL(cuda_lib_path, mode=ctypes.RTLD_GLOBAL)
print(f"Successfully preloaded {cuda_lib_path}")
except OSError as e:
print(f"Failed to preload {cuda_lib_path}: {e}")
# 生成多视图图像
# rgb_normal_grid = generate_multi_view_images(prompt, seed)
rgb_normal_grid = np.load("rgb_normal_grid.npy")
image_preview = Image.fromarray((rgb_normal_grid[0] * 255).astype(np.uint8))
# 3d reconstruction
# 重建 3D 模型并返回 glb 路径
save_glb_addr = reconstruct_3d_model(rgb_normal_grid, prompt)
# save_glb_addr = None
return image_preview, save_glb_addr
# Gradio Blocks 应用
with gr.Blocks() as demo:
with gr.Row(variant="panel"):
# 左侧输入区域
with gr.Column():
with gr.Row():
prompt_input = gr.Textbox(
label="Enter Prompt",
placeholder="Describe your 3D model...",
lines=2,
elem_id="prompt_input"
)
with gr.Row():
sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
gr.Markdown("Examples:")
gr.Examples(
examples=[
["a castle on a hill"],
["an owl wearing a hat"],
["a futuristic car"]
],
inputs=[prompt_input],
label="Prompt Examples"
)
# 右侧输出区域
with gr.Column():
with gr.Row():
rgb_normal_grid_image = gr.Image(
label="RGB Normal Grid",
type="pil",
interactive=False
)
with gr.Row():
with gr.Tab("GLB"):
output_glb_model = gr.Model3D(
label="Generated 3D Model (GLB Format)",
interactive=False
)
gr.Markdown("Download the model for proper visualization.")
# 处理逻辑
submit.click(
fn=gradio_pipeline, inputs=[prompt_input, sample_seed],
outputs=[rgb_normal_grid_image, output_glb_model]
)
# 启动应用
# demo.queue(max_size=10)
demo.launch()