|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | 
					
						
						|  |  | 
					
						
						|  | from ...image_processor import PipelineImageInput, VaeImageProcessor | 
					
						
						|  | from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin | 
					
						
						|  | from ...models.autoencoders import AutoencoderKL | 
					
						
						|  | from ...models.transformers import FluxTransformer2DModel | 
					
						
						|  | from ...schedulers import FlowMatchEulerDiscreteScheduler | 
					
						
						|  | from ...utils import ( | 
					
						
						|  | USE_PEFT_BACKEND, | 
					
						
						|  | is_torch_xla_available, | 
					
						
						|  | logging, | 
					
						
						|  | replace_example_docstring, | 
					
						
						|  | scale_lora_layers, | 
					
						
						|  | unscale_lora_layers, | 
					
						
						|  | ) | 
					
						
						|  | from ...utils.torch_utils import randn_tensor | 
					
						
						|  | from ..pipeline_utils import DiffusionPipeline | 
					
						
						|  | from .pipeline_output import FluxPipelineOutput | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_torch_xla_available(): | 
					
						
						|  | import torch_xla.core.xla_model as xm | 
					
						
						|  |  | 
					
						
						|  | XLA_AVAILABLE = True | 
					
						
						|  | else: | 
					
						
						|  | XLA_AVAILABLE = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> import torch | 
					
						
						|  | >>> from controlnet_aux import CannyDetector | 
					
						
						|  | >>> from diffusers import FluxControlPipeline | 
					
						
						|  | >>> from diffusers.utils import load_image | 
					
						
						|  |  | 
					
						
						|  | >>> pipe = FluxControlPipeline.from_pretrained( | 
					
						
						|  | ...     "black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16 | 
					
						
						|  | ... ).to("cuda") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts." | 
					
						
						|  | >>> control_image = load_image( | 
					
						
						|  | ...     "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png" | 
					
						
						|  | ... ) | 
					
						
						|  |  | 
					
						
						|  | >>> processor = CannyDetector() | 
					
						
						|  | >>> control_image = processor( | 
					
						
						|  | ...     control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024 | 
					
						
						|  | ... ) | 
					
						
						|  |  | 
					
						
						|  | >>> image = pipe( | 
					
						
						|  | ...     prompt=prompt, | 
					
						
						|  | ...     control_image=control_image, | 
					
						
						|  | ...     height=1024, | 
					
						
						|  | ...     width=1024, | 
					
						
						|  | ...     num_inference_steps=50, | 
					
						
						|  | ...     guidance_scale=30.0, | 
					
						
						|  | ... ).images[0] | 
					
						
						|  | >>> image.save("output.png") | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def calculate_shift( | 
					
						
						|  | image_seq_len, | 
					
						
						|  | base_seq_len: int = 256, | 
					
						
						|  | max_seq_len: int = 4096, | 
					
						
						|  | base_shift: float = 0.5, | 
					
						
						|  | max_shift: float = 1.16, | 
					
						
						|  | ): | 
					
						
						|  | m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | 
					
						
						|  | b = base_shift - m * base_seq_len | 
					
						
						|  | mu = image_seq_len * m + b | 
					
						
						|  | return mu | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def retrieve_timesteps( | 
					
						
						|  | scheduler, | 
					
						
						|  | num_inference_steps: Optional[int] = None, | 
					
						
						|  | device: Optional[Union[str, torch.device]] = None, | 
					
						
						|  | timesteps: Optional[List[int]] = None, | 
					
						
						|  | sigmas: Optional[List[float]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | 
					
						
						|  | custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | scheduler (`SchedulerMixin`): | 
					
						
						|  | The scheduler to get timesteps from. | 
					
						
						|  | num_inference_steps (`int`): | 
					
						
						|  | The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | 
					
						
						|  | must be `None`. | 
					
						
						|  | device (`str` or `torch.device`, *optional*): | 
					
						
						|  | The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | 
					
						
						|  | timesteps (`List[int]`, *optional*): | 
					
						
						|  | Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | 
					
						
						|  | `num_inference_steps` and `sigmas` must be `None`. | 
					
						
						|  | sigmas (`List[float]`, *optional*): | 
					
						
						|  | Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | 
					
						
						|  | `num_inference_steps` and `timesteps` must be `None`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | 
					
						
						|  | second element is the number of inference steps. | 
					
						
						|  | """ | 
					
						
						|  | if timesteps is not None and sigmas is not None: | 
					
						
						|  | raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | 
					
						
						|  | if timesteps is not None: | 
					
						
						|  | accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | 
					
						
						|  | if not accepts_timesteps: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | 
					
						
						|  | f" timestep schedules. Please check whether you are using the correct scheduler." | 
					
						
						|  | ) | 
					
						
						|  | scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | num_inference_steps = len(timesteps) | 
					
						
						|  | elif sigmas is not None: | 
					
						
						|  | accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | 
					
						
						|  | if not accept_sigmas: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | 
					
						
						|  | f" sigmas schedules. Please check whether you are using the correct scheduler." | 
					
						
						|  | ) | 
					
						
						|  | scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | num_inference_steps = len(timesteps) | 
					
						
						|  | else: | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | return timesteps, num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FluxControlPipeline( | 
					
						
						|  | DiffusionPipeline, | 
					
						
						|  | FluxLoraLoaderMixin, | 
					
						
						|  | FromSingleFileMixin, | 
					
						
						|  | TextualInversionLoaderMixin, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | The Flux pipeline for controllable text-to-image generation. | 
					
						
						|  |  | 
					
						
						|  | Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | transformer ([`FluxTransformer2DModel`]): | 
					
						
						|  | Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | 
					
						
						|  | scheduler ([`FlowMatchEulerDiscreteScheduler`]): | 
					
						
						|  | A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`CLIPTextModel`]): | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | 
					
						
						|  | the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
						
						|  | text_encoder_2 ([`T5EncoderModel`]): | 
					
						
						|  | [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | 
					
						
						|  | the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | 
					
						
						|  | tokenizer (`CLIPTokenizer`): | 
					
						
						|  | Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | tokenizer_2 (`T5TokenizerFast`): | 
					
						
						|  | Second Tokenizer of class | 
					
						
						|  | [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" | 
					
						
						|  | _optional_components = [] | 
					
						
						|  | _callback_tensor_inputs = ["latents", "prompt_embeds"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | scheduler: FlowMatchEulerDiscreteScheduler, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | text_encoder_2: T5EncoderModel, | 
					
						
						|  | tokenizer_2: T5TokenizerFast, | 
					
						
						|  | transformer: FluxTransformer2DModel, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | text_encoder_2=text_encoder_2, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | tokenizer_2=tokenizer_2, | 
					
						
						|  | transformer=transformer, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor = ( | 
					
						
						|  | 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 | 
					
						
						|  | ) | 
					
						
						|  | self.vae_latent_channels = ( | 
					
						
						|  | self.vae.config.latent_channels if hasattr(self, "vae") and self.vae is not None else 16 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.image_processor = VaeImageProcessor( | 
					
						
						|  | vae_scale_factor=self.vae_scale_factor * 2, vae_latent_channels=self.vae_latent_channels | 
					
						
						|  | ) | 
					
						
						|  | self.tokenizer_max_length = ( | 
					
						
						|  | self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | 
					
						
						|  | ) | 
					
						
						|  | self.default_sample_size = 128 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_t5_prompt_embeds( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | num_images_per_prompt: int = 1, | 
					
						
						|  | max_sequence_length: int = 512, | 
					
						
						|  | device: Optional[torch.device] = None, | 
					
						
						|  | dtype: Optional[torch.dtype] = None, | 
					
						
						|  | ): | 
					
						
						|  | device = device or self._execution_device | 
					
						
						|  | dtype = dtype or self.text_encoder.dtype | 
					
						
						|  |  | 
					
						
						|  | prompt = [prompt] if isinstance(prompt, str) else prompt | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer_2( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_sequence_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_length=False, | 
					
						
						|  | return_overflowing_tokens=False, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | 
					
						
						|  | removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because `max_sequence_length` is set to " | 
					
						
						|  | f" {max_sequence_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] | 
					
						
						|  |  | 
					
						
						|  | dtype = self.text_encoder_2.dtype | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | _, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_clip_prompt_embeds( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]], | 
					
						
						|  | num_images_per_prompt: int = 1, | 
					
						
						|  | device: Optional[torch.device] = None, | 
					
						
						|  | ): | 
					
						
						|  | device = device or self._execution_device | 
					
						
						|  |  | 
					
						
						|  | prompt = [prompt] if isinstance(prompt, str) else prompt | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_overflowing_tokens=False, | 
					
						
						|  | return_length=False, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.pooler_output | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]], | 
					
						
						|  | prompt_2: Union[str, List[str]], | 
					
						
						|  | device: Optional[torch.device] = None, | 
					
						
						|  | num_images_per_prompt: int = 1, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | max_sequence_length: int = 512, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
						
						|  | used in all text-encoders | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
						
						|  | If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | lora_scale (`float`, *optional*): | 
					
						
						|  | A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
						
						|  | """ | 
					
						
						|  | device = device or self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | 
					
						
						|  | self._lora_scale = lora_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None and USE_PEFT_BACKEND: | 
					
						
						|  | scale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  | if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | 
					
						
						|  | scale_lora_layers(self.text_encoder_2, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | prompt = [prompt] if isinstance(prompt, str) else prompt | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  | prompt_2 = prompt_2 or prompt | 
					
						
						|  | prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pooled_prompt_embeds = self._get_clip_prompt_embeds( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds = self._get_t5_prompt_embeds( | 
					
						
						|  | prompt=prompt_2, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | max_sequence_length=max_sequence_length, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None: | 
					
						
						|  | if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | unscale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder_2 is not None: | 
					
						
						|  | if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | unscale_lora_layers(self.text_encoder_2, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | 
					
						
						|  | text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, pooled_prompt_embeds, text_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_2, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds=None, | 
					
						
						|  | pooled_prompt_embeds=None, | 
					
						
						|  | callback_on_step_end_tensor_inputs=None, | 
					
						
						|  | max_sequence_length=None, | 
					
						
						|  | ): | 
					
						
						|  | if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if callback_on_step_end_tensor_inputs is not None and not all( | 
					
						
						|  | k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt_2 is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  | elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | 
					
						
						|  | raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and pooled_prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if max_sequence_length is not None and max_sequence_length > 512: | 
					
						
						|  | raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  |  | 
					
						
						|  | def _prepare_latent_image_ids(batch_size, height, width, device, dtype): | 
					
						
						|  | latent_image_ids = torch.zeros(height, width, 3) | 
					
						
						|  | latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] | 
					
						
						|  | latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] | 
					
						
						|  |  | 
					
						
						|  | latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | 
					
						
						|  |  | 
					
						
						|  | latent_image_ids = latent_image_ids.reshape( | 
					
						
						|  | latent_image_id_height * latent_image_id_width, latent_image_id_channels | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return latent_image_ids.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  |  | 
					
						
						|  | def _pack_latents(latents, batch_size, num_channels_latents, height, width): | 
					
						
						|  | latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) | 
					
						
						|  | latents = latents.permute(0, 2, 4, 1, 3, 5) | 
					
						
						|  | latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) | 
					
						
						|  |  | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  |  | 
					
						
						|  | def _unpack_latents(latents, height, width, vae_scale_factor): | 
					
						
						|  | batch_size, num_patches, channels = latents.shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | height = 2 * (int(height) // (vae_scale_factor * 2)) | 
					
						
						|  | width = 2 * (int(width) // (vae_scale_factor * 2)) | 
					
						
						|  |  | 
					
						
						|  | latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) | 
					
						
						|  | latents = latents.permute(0, 3, 1, 4, 2, 5) | 
					
						
						|  |  | 
					
						
						|  | latents = latents.reshape(batch_size, channels // (2 * 2), height, width) | 
					
						
						|  |  | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | 
					
						
						|  | compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_slicing() | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_slicing() | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_tiling(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | 
					
						
						|  | compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | 
					
						
						|  | processing larger images. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_tiling() | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_tiling(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_tiling() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents( | 
					
						
						|  | self, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents=None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | height = 2 * (int(height) // (self.vae_scale_factor * 2)) | 
					
						
						|  | width = 2 * (int(width) // (self.vae_scale_factor * 2)) | 
					
						
						|  |  | 
					
						
						|  | shape = (batch_size, num_channels_latents, height, width) | 
					
						
						|  |  | 
					
						
						|  | if latents is not None: | 
					
						
						|  | latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) | 
					
						
						|  | return latents.to(device=device, dtype=dtype), latent_image_ids | 
					
						
						|  |  | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | 
					
						
						|  |  | 
					
						
						|  | latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) | 
					
						
						|  |  | 
					
						
						|  | return latents, latent_image_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_image( | 
					
						
						|  | self, | 
					
						
						|  | image, | 
					
						
						|  | width, | 
					
						
						|  | height, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | device, | 
					
						
						|  | dtype, | 
					
						
						|  | do_classifier_free_guidance=False, | 
					
						
						|  | guess_mode=False, | 
					
						
						|  | ): | 
					
						
						|  | if isinstance(image, torch.Tensor): | 
					
						
						|  | pass | 
					
						
						|  | else: | 
					
						
						|  | image = self.image_processor.preprocess(image, height=height, width=width) | 
					
						
						|  |  | 
					
						
						|  | image_batch_size = image.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if image_batch_size == 1: | 
					
						
						|  | repeat_by = batch_size | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | repeat_by = num_images_per_prompt | 
					
						
						|  |  | 
					
						
						|  | image = image.repeat_interleave(repeat_by, dim=0) | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and not guess_mode: | 
					
						
						|  | image = torch.cat([image] * 2) | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def guidance_scale(self): | 
					
						
						|  | return self._guidance_scale | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def joint_attention_kwargs(self): | 
					
						
						|  | return self._joint_attention_kwargs | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_timesteps(self): | 
					
						
						|  | return self._num_timesteps | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def interrupt(self): | 
					
						
						|  | return self._interrupt | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | prompt_2: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | control_image: PipelineImageInput = None, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | num_inference_steps: int = 28, | 
					
						
						|  | sigmas: Optional[List[float]] = None, | 
					
						
						|  | guidance_scale: float = 3.5, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | joint_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | 
					
						
						|  | callback_on_step_end_tensor_inputs: List[str] = ["latents"], | 
					
						
						|  | max_sequence_length: int = 512, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | 
					
						
						|  | instead. | 
					
						
						|  | prompt_2 (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
						
						|  | will be used instead | 
					
						
						|  | control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | 
					
						
						|  | `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | 
					
						
						|  | The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | 
					
						
						|  | specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted | 
					
						
						|  | as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or | 
					
						
						|  | width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, | 
					
						
						|  | images must be passed as a list such that each element of the list can be correctly batched for input | 
					
						
						|  | to a single ControlNet. | 
					
						
						|  | height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The height in pixels of the generated image. This is set to 1024 by default for the best results. | 
					
						
						|  | width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The width in pixels of the generated image. This is set to 1024 by default for the best results. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | sigmas (`List[float]`, *optional*): | 
					
						
						|  | Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | 
					
						
						|  | their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | 
					
						
						|  | will be used. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.0): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | 
					
						
						|  | to make generation deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor will ge generated by sampling using the supplied random `generator`. | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
						
						|  | If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generate image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | 
					
						
						|  | joint_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | 
					
						
						|  | `self.processor` in | 
					
						
						|  | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | callback_on_step_end (`Callable`, *optional*): | 
					
						
						|  | A function that calls at the end of each denoising steps during the inference. The function is called | 
					
						
						|  | with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | 
					
						
						|  | callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | 
					
						
						|  | `callback_on_step_end_tensor_inputs`. | 
					
						
						|  | callback_on_step_end_tensor_inputs (`List`, *optional*): | 
					
						
						|  | The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | 
					
						
						|  | will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | 
					
						
						|  | `._callback_tensor_inputs` attribute of your pipeline class. | 
					
						
						|  | max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | 
					
						
						|  | is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | 
					
						
						|  | images. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | height = height or self.default_sample_size * self.vae_scale_factor | 
					
						
						|  | width = width or self.default_sample_size * self.vae_scale_factor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | prompt, | 
					
						
						|  | prompt_2, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds=pooled_prompt_embeds, | 
					
						
						|  | callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | 
					
						
						|  | max_sequence_length=max_sequence_length, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self._guidance_scale = guidance_scale | 
					
						
						|  | self._joint_attention_kwargs = joint_attention_kwargs | 
					
						
						|  | self._interrupt = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | lora_scale = ( | 
					
						
						|  | self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | 
					
						
						|  | ) | 
					
						
						|  | ( | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds, | 
					
						
						|  | text_ids, | 
					
						
						|  | ) = self.encode_prompt( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | prompt_2=prompt_2, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds=pooled_prompt_embeds, | 
					
						
						|  | device=device, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | max_sequence_length=max_sequence_length, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.transformer.config.in_channels // 8 | 
					
						
						|  |  | 
					
						
						|  | control_image = self.prepare_image( | 
					
						
						|  | image=control_image, | 
					
						
						|  | width=width, | 
					
						
						|  | height=height, | 
					
						
						|  | batch_size=batch_size * num_images_per_prompt, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=self.vae.dtype, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if control_image.ndim == 4: | 
					
						
						|  | control_image = self.vae.encode(control_image).latent_dist.sample(generator=generator) | 
					
						
						|  | control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor | 
					
						
						|  |  | 
					
						
						|  | height_control_image, width_control_image = control_image.shape[2:] | 
					
						
						|  | control_image = self._pack_latents( | 
					
						
						|  | control_image, | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height_control_image, | 
					
						
						|  | width_control_image, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | latents, latent_image_ids = self.prepare_latents( | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | 
					
						
						|  | image_seq_len = latents.shape[1] | 
					
						
						|  | mu = calculate_shift( | 
					
						
						|  | image_seq_len, | 
					
						
						|  | self.scheduler.config.base_image_seq_len, | 
					
						
						|  | self.scheduler.config.max_image_seq_len, | 
					
						
						|  | self.scheduler.config.base_shift, | 
					
						
						|  | self.scheduler.config.max_shift, | 
					
						
						|  | ) | 
					
						
						|  | timesteps, num_inference_steps = retrieve_timesteps( | 
					
						
						|  | self.scheduler, | 
					
						
						|  | num_inference_steps, | 
					
						
						|  | device, | 
					
						
						|  | sigmas=sigmas, | 
					
						
						|  | mu=mu, | 
					
						
						|  | ) | 
					
						
						|  | num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | 
					
						
						|  | self._num_timesteps = len(timesteps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.transformer.config.guidance_embeds: | 
					
						
						|  | guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | 
					
						
						|  | guidance = guidance.expand(latents.shape[0]) | 
					
						
						|  | else: | 
					
						
						|  | guidance = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  | if self.interrupt: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([latents, control_image], dim=2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timestep = t.expand(latents.shape[0]).to(latents.dtype) | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.transformer( | 
					
						
						|  | hidden_states=latent_model_input, | 
					
						
						|  | timestep=timestep / 1000, | 
					
						
						|  | guidance=guidance, | 
					
						
						|  | pooled_projections=pooled_prompt_embeds, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | txt_ids=text_ids, | 
					
						
						|  | img_ids=latent_image_ids, | 
					
						
						|  | joint_attention_kwargs=self.joint_attention_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents_dtype = latents.dtype | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  | if latents.dtype != latents_dtype: | 
					
						
						|  | if torch.backends.mps.is_available(): | 
					
						
						|  |  | 
					
						
						|  | latents = latents.to(latents_dtype) | 
					
						
						|  |  | 
					
						
						|  | if callback_on_step_end is not None: | 
					
						
						|  | callback_kwargs = {} | 
					
						
						|  | for k in callback_on_step_end_tensor_inputs: | 
					
						
						|  | callback_kwargs[k] = locals()[k] | 
					
						
						|  | callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | 
					
						
						|  |  | 
					
						
						|  | latents = callback_outputs.pop("latents", latents) | 
					
						
						|  | prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  |  | 
					
						
						|  | if XLA_AVAILABLE: | 
					
						
						|  | xm.mark_step() | 
					
						
						|  |  | 
					
						
						|  | if output_type == "latent": | 
					
						
						|  | image = latents | 
					
						
						|  | else: | 
					
						
						|  | latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | 
					
						
						|  | latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | 
					
						
						|  | image = self.vae.decode(latents, return_dict=False)[0] | 
					
						
						|  | image = self.image_processor.postprocess(image, output_type=output_type) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.maybe_free_model_hooks() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image,) | 
					
						
						|  |  | 
					
						
						|  | return FluxPipelineOutput(images=image) | 
					
						
						|  |  |