|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | from diffusers import DDIMParallelScheduler | 
					
						
						|  |  | 
					
						
						|  | from .test_schedulers import SchedulerCommonTest | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DDIMParallelSchedulerTest(SchedulerCommonTest): | 
					
						
						|  | scheduler_classes = (DDIMParallelScheduler,) | 
					
						
						|  | forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50)) | 
					
						
						|  |  | 
					
						
						|  | def get_scheduler_config(self, **kwargs): | 
					
						
						|  | config = { | 
					
						
						|  | "num_train_timesteps": 1000, | 
					
						
						|  | "beta_start": 0.0001, | 
					
						
						|  | "beta_end": 0.02, | 
					
						
						|  | "beta_schedule": "linear", | 
					
						
						|  | "clip_sample": True, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | config.update(**kwargs) | 
					
						
						|  | return config | 
					
						
						|  |  | 
					
						
						|  | def full_loop(self, **config): | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config(**config) | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps, eta = 10, 0.0 | 
					
						
						|  |  | 
					
						
						|  | model = self.dummy_model() | 
					
						
						|  | sample = self.dummy_sample_deter | 
					
						
						|  |  | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | for t in scheduler.timesteps: | 
					
						
						|  | residual = model(sample, t) | 
					
						
						|  | sample = scheduler.step(residual, t, sample, eta).prev_sample | 
					
						
						|  |  | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | def test_timesteps(self): | 
					
						
						|  | for timesteps in [100, 500, 1000]: | 
					
						
						|  | self.check_over_configs(num_train_timesteps=timesteps) | 
					
						
						|  |  | 
					
						
						|  | def test_steps_offset(self): | 
					
						
						|  | for steps_offset in [0, 1]: | 
					
						
						|  | self.check_over_configs(steps_offset=steps_offset) | 
					
						
						|  |  | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config(steps_offset=1) | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  | scheduler.set_timesteps(5) | 
					
						
						|  | assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1])) | 
					
						
						|  |  | 
					
						
						|  | def test_betas(self): | 
					
						
						|  | for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): | 
					
						
						|  | self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | 
					
						
						|  |  | 
					
						
						|  | def test_schedules(self): | 
					
						
						|  | for schedule in ["linear", "squaredcos_cap_v2"]: | 
					
						
						|  | self.check_over_configs(beta_schedule=schedule) | 
					
						
						|  |  | 
					
						
						|  | def test_prediction_type(self): | 
					
						
						|  | for prediction_type in ["epsilon", "v_prediction"]: | 
					
						
						|  | self.check_over_configs(prediction_type=prediction_type) | 
					
						
						|  |  | 
					
						
						|  | def test_clip_sample(self): | 
					
						
						|  | for clip_sample in [True, False]: | 
					
						
						|  | self.check_over_configs(clip_sample=clip_sample) | 
					
						
						|  |  | 
					
						
						|  | def test_timestep_spacing(self): | 
					
						
						|  | for timestep_spacing in ["trailing", "leading"]: | 
					
						
						|  | self.check_over_configs(timestep_spacing=timestep_spacing) | 
					
						
						|  |  | 
					
						
						|  | def test_rescale_betas_zero_snr(self): | 
					
						
						|  | for rescale_betas_zero_snr in [True, False]: | 
					
						
						|  | self.check_over_configs(rescale_betas_zero_snr=rescale_betas_zero_snr) | 
					
						
						|  |  | 
					
						
						|  | def test_thresholding(self): | 
					
						
						|  | self.check_over_configs(thresholding=False) | 
					
						
						|  | for threshold in [0.5, 1.0, 2.0]: | 
					
						
						|  | for prediction_type in ["epsilon", "v_prediction"]: | 
					
						
						|  | self.check_over_configs( | 
					
						
						|  | thresholding=True, | 
					
						
						|  | prediction_type=prediction_type, | 
					
						
						|  | sample_max_value=threshold, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def test_time_indices(self): | 
					
						
						|  | for t in [1, 10, 49]: | 
					
						
						|  | self.check_over_forward(time_step=t) | 
					
						
						|  |  | 
					
						
						|  | def test_inference_steps(self): | 
					
						
						|  | for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]): | 
					
						
						|  | self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | def test_eta(self): | 
					
						
						|  | for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]): | 
					
						
						|  | self.check_over_forward(time_step=t, eta=eta) | 
					
						
						|  |  | 
					
						
						|  | def test_variance(self): | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5 | 
					
						
						|  | assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5 | 
					
						
						|  | assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5 | 
					
						
						|  | assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5 | 
					
						
						|  | assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5 | 
					
						
						|  | assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5 | 
					
						
						|  |  | 
					
						
						|  | def test_batch_step_no_noise(self): | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps, eta = 10, 0.0 | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | model = self.dummy_model() | 
					
						
						|  | sample1 = self.dummy_sample_deter | 
					
						
						|  | sample2 = self.dummy_sample_deter + 0.1 | 
					
						
						|  | sample3 = self.dummy_sample_deter - 0.1 | 
					
						
						|  |  | 
					
						
						|  | per_sample_batch = sample1.shape[0] | 
					
						
						|  | samples = torch.stack([sample1, sample2, sample3], dim=0) | 
					
						
						|  | timesteps = torch.arange(num_inference_steps)[0:3, None].repeat(1, per_sample_batch) | 
					
						
						|  |  | 
					
						
						|  | residual = model(samples.flatten(0, 1), timesteps.flatten(0, 1)) | 
					
						
						|  | pred_prev_sample = scheduler.batch_step_no_noise(residual, timesteps.flatten(0, 1), samples.flatten(0, 1), eta) | 
					
						
						|  |  | 
					
						
						|  | result_sum = torch.sum(torch.abs(pred_prev_sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(pred_prev_sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 1147.7904) < 1e-2 | 
					
						
						|  | assert abs(result_mean.item() - 0.4982) < 1e-3 | 
					
						
						|  |  | 
					
						
						|  | def test_full_loop_no_noise(self): | 
					
						
						|  | sample = self.full_loop() | 
					
						
						|  |  | 
					
						
						|  | result_sum = torch.sum(torch.abs(sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 172.0067) < 1e-2 | 
					
						
						|  | assert abs(result_mean.item() - 0.223967) < 1e-3 | 
					
						
						|  |  | 
					
						
						|  | def test_full_loop_with_v_prediction(self): | 
					
						
						|  | sample = self.full_loop(prediction_type="v_prediction") | 
					
						
						|  |  | 
					
						
						|  | result_sum = torch.sum(torch.abs(sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 52.5302) < 1e-2 | 
					
						
						|  | assert abs(result_mean.item() - 0.0684) < 1e-3 | 
					
						
						|  |  | 
					
						
						|  | def test_full_loop_with_set_alpha_to_one(self): | 
					
						
						|  |  | 
					
						
						|  | sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) | 
					
						
						|  | result_sum = torch.sum(torch.abs(sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 149.8295) < 1e-2 | 
					
						
						|  | assert abs(result_mean.item() - 0.1951) < 1e-3 | 
					
						
						|  |  | 
					
						
						|  | def test_full_loop_with_no_set_alpha_to_one(self): | 
					
						
						|  |  | 
					
						
						|  | sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) | 
					
						
						|  | result_sum = torch.sum(torch.abs(sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 149.0784) < 1e-2 | 
					
						
						|  | assert abs(result_mean.item() - 0.1941) < 1e-3 | 
					
						
						|  |  | 
					
						
						|  | def test_full_loop_with_noise(self): | 
					
						
						|  | scheduler_class = self.scheduler_classes[0] | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps, eta = 10, 0.0 | 
					
						
						|  | t_start = 8 | 
					
						
						|  |  | 
					
						
						|  | model = self.dummy_model() | 
					
						
						|  | sample = self.dummy_sample_deter | 
					
						
						|  |  | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise = self.dummy_noise_deter | 
					
						
						|  | timesteps = scheduler.timesteps[t_start * scheduler.order :] | 
					
						
						|  | sample = scheduler.add_noise(sample, noise, timesteps[:1]) | 
					
						
						|  |  | 
					
						
						|  | for t in timesteps: | 
					
						
						|  | residual = model(sample, t) | 
					
						
						|  | sample = scheduler.step(residual, t, sample, eta).prev_sample | 
					
						
						|  |  | 
					
						
						|  | result_sum = torch.sum(torch.abs(sample)) | 
					
						
						|  | result_mean = torch.mean(torch.abs(sample)) | 
					
						
						|  |  | 
					
						
						|  | assert abs(result_sum.item() - 354.5418) < 1e-2, f" expected result sum 354.5418, but get {result_sum}" | 
					
						
						|  | assert abs(result_mean.item() - 0.4616) < 1e-3, f" expected result mean 0.4616, but get {result_mean}" | 
					
						
						|  |  |