|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import Any, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import PIL.Image | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers import AutoencoderKL, ConfigMixin, DiffusionPipeline, SchedulerMixin, UNet2DConditionModel, logging | 
					
						
						|  | from diffusers.configuration_utils import register_to_config | 
					
						
						|  | from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | 
					
						
						|  | from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | 
					
						
						|  | from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | 
					
						
						|  | from diffusers.utils import BaseOutput | 
					
						
						|  | from diffusers.utils.torch_utils import randn_tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LatentConsistencyModelImg2ImgPipeline(DiffusionPipeline): | 
					
						
						|  | _optional_components = ["scheduler"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: "LCMSchedulerWithTimestamp", | 
					
						
						|  | safety_checker: StableDiffusionSafetyChecker, | 
					
						
						|  | feature_extractor: CLIPImageProcessor, | 
					
						
						|  | requires_safety_checker: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | scheduler = ( | 
					
						
						|  | scheduler | 
					
						
						|  | if scheduler is not None | 
					
						
						|  | else LCMSchedulerWithTimestamp( | 
					
						
						|  | beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon" | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | safety_checker=safety_checker, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
						
						|  |  | 
					
						
						|  | def _encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | prompt_embeds: None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | pass | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode( | 
					
						
						|  | untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
						
						|  | ) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = text_inputs.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder( | 
					
						
						|  | text_input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds = prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None: | 
					
						
						|  | prompt_embeds_dtype = self.text_encoder.dtype | 
					
						
						|  | elif self.unet is not None: | 
					
						
						|  | prompt_embeds_dtype = self.unet.dtype | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds_dtype = prompt_embeds.dtype | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds | 
					
						
						|  |  | 
					
						
						|  | def run_safety_checker(self, image, device, dtype): | 
					
						
						|  | if self.safety_checker is None: | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  | else: | 
					
						
						|  | if torch.is_tensor(image): | 
					
						
						|  | feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | 
					
						
						|  | else: | 
					
						
						|  | feature_extractor_input = self.image_processor.numpy_to_pil(image) | 
					
						
						|  | safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | 
					
						
						|  | image, has_nsfw_concept = self.safety_checker( | 
					
						
						|  | images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | 
					
						
						|  | ) | 
					
						
						|  | return image, has_nsfw_concept | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents( | 
					
						
						|  | self, | 
					
						
						|  | image, | 
					
						
						|  | timestep, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | dtype, | 
					
						
						|  | device, | 
					
						
						|  | latents=None, | 
					
						
						|  | generator=None, | 
					
						
						|  | ): | 
					
						
						|  | shape = ( | 
					
						
						|  | batch_size, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | int(height) // self.vae_scale_factor, | 
					
						
						|  | int(width) // self.vae_scale_factor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if image.shape[1] == 4: | 
					
						
						|  | init_latents = image | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(generator, list): | 
					
						
						|  | init_latents = [ | 
					
						
						|  | self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | 
					
						
						|  | ] | 
					
						
						|  | init_latents = torch.cat(init_latents, dim=0) | 
					
						
						|  | else: | 
					
						
						|  | init_latents = self.vae.encode(image).latent_dist.sample(generator) | 
					
						
						|  |  | 
					
						
						|  | init_latents = self.vae.config.scaling_factor * init_latents | 
					
						
						|  |  | 
					
						
						|  | if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | 
					
						
						|  |  | 
					
						
						|  | ( | 
					
						
						|  | f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" | 
					
						
						|  | " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | 
					
						
						|  | " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | 
					
						
						|  | " your script to pass as many initial images as text prompts to suppress this warning." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | additional_image_per_prompt = batch_size // init_latents.shape[0] | 
					
						
						|  | init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | 
					
						
						|  | elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | init_latents = torch.cat([init_latents], dim=0) | 
					
						
						|  |  | 
					
						
						|  | shape = init_latents.shape | 
					
						
						|  | noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | 
					
						
						|  | latents = init_latents | 
					
						
						|  |  | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): | 
					
						
						|  | """ | 
					
						
						|  | see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | 
					
						
						|  | Args: | 
					
						
						|  | timesteps: torch.Tensor: generate embedding vectors at these timesteps | 
					
						
						|  | embedding_dim: int: dimension of the embeddings to generate | 
					
						
						|  | dtype: data type of the generated embeddings | 
					
						
						|  | Returns: | 
					
						
						|  | embedding vectors with shape `(len(timesteps), embedding_dim)` | 
					
						
						|  | """ | 
					
						
						|  | assert len(w.shape) == 1 | 
					
						
						|  | w = w * 1000.0 | 
					
						
						|  |  | 
					
						
						|  | half_dim = embedding_dim // 2 | 
					
						
						|  | emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | 
					
						
						|  | emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | 
					
						
						|  | emb = w.to(dtype)[:, None] * emb[None, :] | 
					
						
						|  | emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | 
					
						
						|  | if embedding_dim % 2 == 1: | 
					
						
						|  | emb = torch.nn.functional.pad(emb, (0, 1)) | 
					
						
						|  | assert emb.shape == (w.shape[0], embedding_dim) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  | def get_timesteps(self, num_inference_steps, strength, device): | 
					
						
						|  |  | 
					
						
						|  | init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | t_start = max(num_inference_steps - init_timestep, 0) | 
					
						
						|  | timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | 
					
						
						|  |  | 
					
						
						|  | return timesteps, num_inference_steps - t_start | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | image: PipelineImageInput = None, | 
					
						
						|  | strength: float = 0.8, | 
					
						
						|  | height: Optional[int] = 768, | 
					
						
						|  | width: Optional[int] = 768, | 
					
						
						|  | guidance_scale: float = 7.5, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | latents: Optional[torch.Tensor] = None, | 
					
						
						|  | num_inference_steps: int = 4, | 
					
						
						|  | lcm_origin_steps: int = 50, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | height = height or self.unet.config.sample_size * self.vae_scale_factor | 
					
						
						|  | width = width or self.unet.config.sample_size * self.vae_scale_factor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self._encode_prompt( | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.preprocess(image) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(strength, num_inference_steps, lcm_origin_steps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timesteps = self.scheduler.timesteps | 
					
						
						|  | latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | 
					
						
						|  |  | 
					
						
						|  | print("timesteps: ", timesteps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.unet.config.in_channels | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | image, | 
					
						
						|  | latent_timestep, | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  | bs = batch_size * num_images_per_prompt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | w = torch.tensor(guidance_scale).repeat(bs) | 
					
						
						|  | w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device=device, dtype=latents.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  | ts = torch.full((bs,), t, device=device, dtype=torch.long) | 
					
						
						|  | latents = latents.to(prompt_embeds.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_pred = self.unet( | 
					
						
						|  | latents, | 
					
						
						|  | ts, | 
					
						
						|  | timestep_cond=w_embedding, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents, denoised = self.scheduler.step(model_pred, i, t, latents, return_dict=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | progress_bar.update() | 
					
						
						|  |  | 
					
						
						|  | denoised = denoised.to(prompt_embeds.dtype) | 
					
						
						|  | if not output_type == "latent": | 
					
						
						|  | image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0] | 
					
						
						|  | image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | 
					
						
						|  | else: | 
					
						
						|  | image = denoised | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  |  | 
					
						
						|  | if has_nsfw_concept is None: | 
					
						
						|  | do_denormalize = [True] * image.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image, has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  |  | 
					
						
						|  | class LCMSchedulerOutput(BaseOutput): | 
					
						
						|  | """ | 
					
						
						|  | Output class for the scheduler's `step` function output. | 
					
						
						|  | Args: | 
					
						
						|  | prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | 
					
						
						|  | Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | 
					
						
						|  | denoising loop. | 
					
						
						|  | pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | 
					
						
						|  | The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | 
					
						
						|  | `pred_original_sample` can be used to preview progress or for guidance. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | prev_sample: torch.Tensor | 
					
						
						|  | denoised: Optional[torch.Tensor] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def betas_for_alpha_bar( | 
					
						
						|  | num_diffusion_timesteps, | 
					
						
						|  | max_beta=0.999, | 
					
						
						|  | alpha_transform_type="cosine", | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | 
					
						
						|  | (1-beta) over time from t = [0,1]. | 
					
						
						|  | Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | 
					
						
						|  | to that part of the diffusion process. | 
					
						
						|  | Args: | 
					
						
						|  | num_diffusion_timesteps (`int`): the number of betas to produce. | 
					
						
						|  | max_beta (`float`): the maximum beta to use; use values lower than 1 to | 
					
						
						|  | prevent singularities. | 
					
						
						|  | alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | 
					
						
						|  | Choose from `cosine` or `exp` | 
					
						
						|  | Returns: | 
					
						
						|  | betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | 
					
						
						|  | """ | 
					
						
						|  | if alpha_transform_type == "cosine": | 
					
						
						|  |  | 
					
						
						|  | def alpha_bar_fn(t): | 
					
						
						|  | return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | 
					
						
						|  |  | 
					
						
						|  | elif alpha_transform_type == "exp": | 
					
						
						|  |  | 
					
						
						|  | def alpha_bar_fn(t): | 
					
						
						|  | return math.exp(t * -12.0) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") | 
					
						
						|  |  | 
					
						
						|  | betas = [] | 
					
						
						|  | for i in range(num_diffusion_timesteps): | 
					
						
						|  | t1 = i / num_diffusion_timesteps | 
					
						
						|  | t2 = (i + 1) / num_diffusion_timesteps | 
					
						
						|  | betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | 
					
						
						|  | return torch.tensor(betas, dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rescale_zero_terminal_snr(betas): | 
					
						
						|  | """ | 
					
						
						|  | Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) | 
					
						
						|  | Args: | 
					
						
						|  | betas (`torch.Tensor`): | 
					
						
						|  | the betas that the scheduler is being initialized with. | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.Tensor`: rescaled betas with zero terminal SNR | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | alphas = 1.0 - betas | 
					
						
						|  | alphas_cumprod = torch.cumprod(alphas, dim=0) | 
					
						
						|  | alphas_bar_sqrt = alphas_cumprod.sqrt() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() | 
					
						
						|  | alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | alphas_bar_sqrt -= alphas_bar_sqrt_T | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | alphas_bar = alphas_bar_sqrt**2 | 
					
						
						|  | alphas = alphas_bar[1:] / alphas_bar[:-1] | 
					
						
						|  | alphas = torch.cat([alphas_bar[0:1], alphas]) | 
					
						
						|  | betas = 1 - alphas | 
					
						
						|  |  | 
					
						
						|  | return betas | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LCMSchedulerWithTimestamp(SchedulerMixin, ConfigMixin): | 
					
						
						|  | """ | 
					
						
						|  | This class modifies LCMScheduler to add a timestamp argument to set_timesteps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | `LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with | 
					
						
						|  | non-Markovian guidance. | 
					
						
						|  | This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | 
					
						
						|  | methods the library implements for all schedulers such as loading and saving. | 
					
						
						|  | Args: | 
					
						
						|  | num_train_timesteps (`int`, defaults to 1000): | 
					
						
						|  | The number of diffusion steps to train the model. | 
					
						
						|  | beta_start (`float`, defaults to 0.0001): | 
					
						
						|  | The starting `beta` value of inference. | 
					
						
						|  | beta_end (`float`, defaults to 0.02): | 
					
						
						|  | The final `beta` value. | 
					
						
						|  | beta_schedule (`str`, defaults to `"linear"`): | 
					
						
						|  | The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | 
					
						
						|  | `linear`, `scaled_linear`, or `squaredcos_cap_v2`. | 
					
						
						|  | trained_betas (`np.ndarray`, *optional*): | 
					
						
						|  | Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. | 
					
						
						|  | clip_sample (`bool`, defaults to `True`): | 
					
						
						|  | Clip the predicted sample for numerical stability. | 
					
						
						|  | clip_sample_range (`float`, defaults to 1.0): | 
					
						
						|  | The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. | 
					
						
						|  | set_alpha_to_one (`bool`, defaults to `True`): | 
					
						
						|  | Each diffusion step uses the alphas product value at that step and at the previous one. For the final step | 
					
						
						|  | there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, | 
					
						
						|  | otherwise it uses the alpha value at step 0. | 
					
						
						|  | steps_offset (`int`, defaults to 0): | 
					
						
						|  | An offset added to the inference steps, as required by some model families. | 
					
						
						|  | prediction_type (`str`, defaults to `epsilon`, *optional*): | 
					
						
						|  | Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | 
					
						
						|  | `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | 
					
						
						|  | Video](https://imagen.research.google/video/paper.pdf) paper). | 
					
						
						|  | thresholding (`bool`, defaults to `False`): | 
					
						
						|  | Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such | 
					
						
						|  | as Stable Diffusion. | 
					
						
						|  | dynamic_thresholding_ratio (`float`, defaults to 0.995): | 
					
						
						|  | The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. | 
					
						
						|  | sample_max_value (`float`, defaults to 1.0): | 
					
						
						|  | The threshold value for dynamic thresholding. Valid only when `thresholding=True`. | 
					
						
						|  | timestep_spacing (`str`, defaults to `"leading"`): | 
					
						
						|  | The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | 
					
						
						|  | Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | 
					
						
						|  | rescale_betas_zero_snr (`bool`, defaults to `False`): | 
					
						
						|  | Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and | 
					
						
						|  | dark samples instead of limiting it to samples with medium brightness. Loosely related to | 
					
						
						|  | [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | order = 1 | 
					
						
						|  |  | 
					
						
						|  | @register_to_config | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | num_train_timesteps: int = 1000, | 
					
						
						|  | beta_start: float = 0.0001, | 
					
						
						|  | beta_end: float = 0.02, | 
					
						
						|  | beta_schedule: str = "linear", | 
					
						
						|  | trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | 
					
						
						|  | clip_sample: bool = True, | 
					
						
						|  | set_alpha_to_one: bool = True, | 
					
						
						|  | steps_offset: int = 0, | 
					
						
						|  | prediction_type: str = "epsilon", | 
					
						
						|  | thresholding: bool = False, | 
					
						
						|  | dynamic_thresholding_ratio: float = 0.995, | 
					
						
						|  | clip_sample_range: float = 1.0, | 
					
						
						|  | sample_max_value: float = 1.0, | 
					
						
						|  | timestep_spacing: str = "leading", | 
					
						
						|  | rescale_betas_zero_snr: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | if trained_betas is not None: | 
					
						
						|  | self.betas = torch.tensor(trained_betas, dtype=torch.float32) | 
					
						
						|  | elif beta_schedule == "linear": | 
					
						
						|  | self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | 
					
						
						|  | elif beta_schedule == "scaled_linear": | 
					
						
						|  |  | 
					
						
						|  | self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | 
					
						
						|  | elif beta_schedule == "squaredcos_cap_v2": | 
					
						
						|  |  | 
					
						
						|  | self.betas = betas_for_alpha_bar(num_train_timesteps) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if rescale_betas_zero_snr: | 
					
						
						|  | self.betas = rescale_zero_terminal_snr(self.betas) | 
					
						
						|  |  | 
					
						
						|  | self.alphas = 1.0 - self.betas | 
					
						
						|  | self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.init_noise_sigma = 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.num_inference_steps = None | 
					
						
						|  | self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) | 
					
						
						|  |  | 
					
						
						|  | def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | 
					
						
						|  | current timestep. | 
					
						
						|  | Args: | 
					
						
						|  | sample (`torch.Tensor`): | 
					
						
						|  | The input sample. | 
					
						
						|  | timestep (`int`, *optional*): | 
					
						
						|  | The current timestep in the diffusion chain. | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.Tensor`: | 
					
						
						|  | A scaled input sample. | 
					
						
						|  | """ | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | def _get_variance(self, timestep, prev_timestep): | 
					
						
						|  | alpha_prod_t = self.alphas_cumprod[timestep] | 
					
						
						|  | alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | 
					
						
						|  | beta_prod_t = 1 - alpha_prod_t | 
					
						
						|  | beta_prod_t_prev = 1 - alpha_prod_t_prev | 
					
						
						|  |  | 
					
						
						|  | variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) | 
					
						
						|  |  | 
					
						
						|  | return variance | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the | 
					
						
						|  | prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by | 
					
						
						|  | s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing | 
					
						
						|  | pixels from saturation at each step. We find that dynamic thresholding results in significantly better | 
					
						
						|  | photorealism as well as better image-text alignment, especially when using very large guidance weights." | 
					
						
						|  | https://arxiv.org/abs/2205.11487 | 
					
						
						|  | """ | 
					
						
						|  | dtype = sample.dtype | 
					
						
						|  | batch_size, channels, height, width = sample.shape | 
					
						
						|  |  | 
					
						
						|  | if dtype not in (torch.float32, torch.float64): | 
					
						
						|  | sample = sample.float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sample = sample.reshape(batch_size, channels * height * width) | 
					
						
						|  |  | 
					
						
						|  | abs_sample = sample.abs() | 
					
						
						|  |  | 
					
						
						|  | s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) | 
					
						
						|  | s = torch.clamp( | 
					
						
						|  | s, min=1, max=self.config.sample_max_value | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | s = s.unsqueeze(1) | 
					
						
						|  | sample = torch.clamp(sample, -s, s) / s | 
					
						
						|  |  | 
					
						
						|  | sample = sample.reshape(batch_size, channels, height, width) | 
					
						
						|  | sample = sample.to(dtype) | 
					
						
						|  |  | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | def set_timesteps( | 
					
						
						|  | self, stength, num_inference_steps: int, lcm_origin_steps: int, device: Union[str, torch.device] = None | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Sets the discrete timesteps used for the diffusion chain (to be run before inference). | 
					
						
						|  | Args: | 
					
						
						|  | num_inference_steps (`int`): | 
					
						
						|  | The number of diffusion steps used when generating samples with a pre-trained model. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if num_inference_steps > self.config.num_train_timesteps: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" | 
					
						
						|  | f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" | 
					
						
						|  | f" maximal {self.config.num_train_timesteps} timesteps." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.num_inference_steps = num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | c = self.config.num_train_timesteps // lcm_origin_steps | 
					
						
						|  | lcm_origin_timesteps = ( | 
					
						
						|  | np.asarray(list(range(1, int(lcm_origin_steps * stength) + 1))) * c - 1 | 
					
						
						|  | ) | 
					
						
						|  | skipping_step = len(lcm_origin_timesteps) // num_inference_steps | 
					
						
						|  | timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps] | 
					
						
						|  |  | 
					
						
						|  | self.timesteps = torch.from_numpy(timesteps.copy()).to(device) | 
					
						
						|  |  | 
					
						
						|  | def get_scalings_for_boundary_condition_discrete(self, t): | 
					
						
						|  | self.sigma_data = 0.5 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2) | 
					
						
						|  | c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5 | 
					
						
						|  | return c_skip, c_out | 
					
						
						|  |  | 
					
						
						|  | def step( | 
					
						
						|  | self, | 
					
						
						|  | model_output: torch.Tensor, | 
					
						
						|  | timeindex: int, | 
					
						
						|  | timestep: int, | 
					
						
						|  | sample: torch.Tensor, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | use_clipped_model_output: bool = False, | 
					
						
						|  | generator=None, | 
					
						
						|  | variance_noise: Optional[torch.Tensor] = None, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[LCMSchedulerOutput, Tuple]: | 
					
						
						|  | """ | 
					
						
						|  | Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | 
					
						
						|  | process from the learned model outputs (most often the predicted noise). | 
					
						
						|  | Args: | 
					
						
						|  | model_output (`torch.Tensor`): | 
					
						
						|  | The direct output from learned diffusion model. | 
					
						
						|  | timestep (`float`): | 
					
						
						|  | The current discrete timestep in the diffusion chain. | 
					
						
						|  | sample (`torch.Tensor`): | 
					
						
						|  | A current instance of a sample created by the diffusion process. | 
					
						
						|  | eta (`float`): | 
					
						
						|  | The weight of noise for added noise in diffusion step. | 
					
						
						|  | use_clipped_model_output (`bool`, defaults to `False`): | 
					
						
						|  | If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary | 
					
						
						|  | because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no | 
					
						
						|  | clipping has happened, "corrected" `model_output` would coincide with the one provided as input and | 
					
						
						|  | `use_clipped_model_output` has no effect. | 
					
						
						|  | generator (`torch.Generator`, *optional*): | 
					
						
						|  | A random number generator. | 
					
						
						|  | variance_noise (`torch.Tensor`): | 
					
						
						|  | Alternative to generating noise with `generator` by directly providing the noise for the variance | 
					
						
						|  | itself. Useful for methods such as [`CycleDiffusion`]. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`. | 
					
						
						|  | Returns: | 
					
						
						|  | [`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`: | 
					
						
						|  | If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a | 
					
						
						|  | tuple is returned where the first element is the sample tensor. | 
					
						
						|  | """ | 
					
						
						|  | if self.num_inference_steps is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prev_timeindex = timeindex + 1 | 
					
						
						|  | if prev_timeindex < len(self.timesteps): | 
					
						
						|  | prev_timestep = self.timesteps[prev_timeindex] | 
					
						
						|  | else: | 
					
						
						|  | prev_timestep = timestep | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | alpha_prod_t = self.alphas_cumprod[timestep] | 
					
						
						|  | alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | 
					
						
						|  |  | 
					
						
						|  | beta_prod_t = 1 - alpha_prod_t | 
					
						
						|  | beta_prod_t_prev = 1 - alpha_prod_t_prev | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | parameterization = self.config.prediction_type | 
					
						
						|  |  | 
					
						
						|  | if parameterization == "epsilon": | 
					
						
						|  | pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt() | 
					
						
						|  |  | 
					
						
						|  | elif parameterization == "sample": | 
					
						
						|  | pred_x0 = model_output | 
					
						
						|  |  | 
					
						
						|  | elif parameterization == "v_prediction": | 
					
						
						|  | pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | denoised = c_out * pred_x0 + c_skip * sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(self.timesteps) > 1: | 
					
						
						|  | noise = torch.randn(model_output.shape).to(model_output.device) | 
					
						
						|  | prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise | 
					
						
						|  | else: | 
					
						
						|  | prev_sample = denoised | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (prev_sample, denoised) | 
					
						
						|  |  | 
					
						
						|  | return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def add_noise( | 
					
						
						|  | self, | 
					
						
						|  | original_samples: torch.Tensor, | 
					
						
						|  | noise: torch.Tensor, | 
					
						
						|  | timesteps: torch.IntTensor, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  | alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) | 
					
						
						|  | timesteps = timesteps.to(original_samples.device) | 
					
						
						|  |  | 
					
						
						|  | sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | 
					
						
						|  | sqrt_alpha_prod = sqrt_alpha_prod.flatten() | 
					
						
						|  | while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | 
					
						
						|  | sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  | sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | 
					
						
						|  | sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | 
					
						
						|  | while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | 
					
						
						|  | sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  | noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | 
					
						
						|  | return noisy_samples | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  | alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype) | 
					
						
						|  | timesteps = timesteps.to(sample.device) | 
					
						
						|  |  | 
					
						
						|  | sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | 
					
						
						|  | sqrt_alpha_prod = sqrt_alpha_prod.flatten() | 
					
						
						|  | while len(sqrt_alpha_prod.shape) < len(sample.shape): | 
					
						
						|  | sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  | sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | 
					
						
						|  | sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | 
					
						
						|  | while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): | 
					
						
						|  | sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  | velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample | 
					
						
						|  | return velocity | 
					
						
						|  |  | 
					
						
						|  | def __len__(self): | 
					
						
						|  | return self.config.num_train_timesteps | 
					
						
						|  |  |