|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import PIL.Image | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | 
					
						
						|  |  | 
					
						
						|  | from ...callbacks import MultiPipelineCallbacks, PipelineCallback | 
					
						
						|  | from ...image_processor import PipelineImageInput, VaeImageProcessor | 
					
						
						|  | from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin | 
					
						
						|  | from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel | 
					
						
						|  | from ...models.lora import adjust_lora_scale_text_encoder | 
					
						
						|  | from ...schedulers import KarrasDiffusionSchedulers | 
					
						
						|  | from ...utils import ( | 
					
						
						|  | USE_PEFT_BACKEND, | 
					
						
						|  | deprecate, | 
					
						
						|  | logging, | 
					
						
						|  | replace_example_docstring, | 
					
						
						|  | scale_lora_layers, | 
					
						
						|  | unscale_lora_layers, | 
					
						
						|  | ) | 
					
						
						|  | from ...utils.torch_utils import is_compiled_module, randn_tensor | 
					
						
						|  | from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin | 
					
						
						|  | from ..stable_diffusion import StableDiffusionPipelineOutput | 
					
						
						|  | from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> # !pip install opencv-python transformers accelerate | 
					
						
						|  | >>> from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler | 
					
						
						|  | >>> from diffusers.utils import load_image | 
					
						
						|  | >>> import numpy as np | 
					
						
						|  | >>> import torch | 
					
						
						|  |  | 
					
						
						|  | >>> import cv2 | 
					
						
						|  | >>> from PIL import Image | 
					
						
						|  |  | 
					
						
						|  | >>> # download an image | 
					
						
						|  | >>> image = load_image( | 
					
						
						|  | ...     "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png" | 
					
						
						|  | ... ) | 
					
						
						|  | >>> np_image = np.array(image) | 
					
						
						|  |  | 
					
						
						|  | >>> # get canny image | 
					
						
						|  | >>> np_image = cv2.Canny(np_image, 100, 200) | 
					
						
						|  | >>> np_image = np_image[:, :, None] | 
					
						
						|  | >>> np_image = np.concatenate([np_image, np_image, np_image], axis=2) | 
					
						
						|  | >>> canny_image = Image.fromarray(np_image) | 
					
						
						|  |  | 
					
						
						|  | >>> # load control net and stable diffusion v1-5 | 
					
						
						|  | >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) | 
					
						
						|  | >>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | 
					
						
						|  | ...     "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 | 
					
						
						|  | ... ) | 
					
						
						|  |  | 
					
						
						|  | >>> # speed up diffusion process with faster scheduler and memory optimization | 
					
						
						|  | >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | 
					
						
						|  | >>> pipe.enable_model_cpu_offload() | 
					
						
						|  |  | 
					
						
						|  | >>> # generate image | 
					
						
						|  | >>> generator = torch.manual_seed(0) | 
					
						
						|  | >>> image = pipe( | 
					
						
						|  | ...     "futuristic-looking woman", | 
					
						
						|  | ...     num_inference_steps=20, | 
					
						
						|  | ...     generator=generator, | 
					
						
						|  | ...     image=image, | 
					
						
						|  | ...     control_image=canny_image, | 
					
						
						|  | ... ).images[0] | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def retrieve_latents( | 
					
						
						|  | encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | 
					
						
						|  | ): | 
					
						
						|  | if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | 
					
						
						|  | return encoder_output.latent_dist.sample(generator) | 
					
						
						|  | elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | 
					
						
						|  | return encoder_output.latent_dist.mode() | 
					
						
						|  | elif hasattr(encoder_output, "latents"): | 
					
						
						|  | return encoder_output.latents | 
					
						
						|  | else: | 
					
						
						|  | raise AttributeError("Could not access latents of provided encoder_output") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_image(image): | 
					
						
						|  | if isinstance(image, torch.Tensor): | 
					
						
						|  |  | 
					
						
						|  | if image.ndim == 3: | 
					
						
						|  | image = image.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | image = image.to(dtype=torch.float32) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, (PIL.Image.Image, np.ndarray)): | 
					
						
						|  | image = [image] | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | 
					
						
						|  | image = [np.array(i.convert("RGB"))[None, :] for i in image] | 
					
						
						|  | image = np.concatenate(image, axis=0) | 
					
						
						|  | elif isinstance(image, list) and isinstance(image[0], np.ndarray): | 
					
						
						|  | image = np.concatenate([i[None, :] for i in image], axis=0) | 
					
						
						|  |  | 
					
						
						|  | image = image.transpose(0, 3, 1, 2) | 
					
						
						|  | image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StableDiffusionControlNetImg2ImgPipeline( | 
					
						
						|  | DiffusionPipeline, | 
					
						
						|  | StableDiffusionMixin, | 
					
						
						|  | TextualInversionLoaderMixin, | 
					
						
						|  | StableDiffusionLoraLoaderMixin, | 
					
						
						|  | IPAdapterMixin, | 
					
						
						|  | FromSingleFileMixin, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for image-to-image generation using Stable Diffusion with ControlNet guidance. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | 
					
						
						|  | implemented for all pipelines (downloading, saving, running on a particular device, etc.). | 
					
						
						|  |  | 
					
						
						|  | The pipeline also inherits the following loading methods: | 
					
						
						|  | - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | 
					
						
						|  | - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights | 
					
						
						|  | - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights | 
					
						
						|  | - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | 
					
						
						|  | - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`~transformers.CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | 
					
						
						|  | tokenizer ([`~transformers.CLIPTokenizer`]): | 
					
						
						|  | A `CLIPTokenizer` to tokenize text. | 
					
						
						|  | unet ([`UNet2DConditionModel`]): | 
					
						
						|  | A `UNet2DConditionModel` to denoise the encoded image latents. | 
					
						
						|  | controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): | 
					
						
						|  | Provides additional conditioning to the `unet` during the denoising process. If you set multiple | 
					
						
						|  | ControlNets as a list, the outputs from each ControlNet are added together to create one combined | 
					
						
						|  | additional conditioning. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | safety_checker ([`StableDiffusionSafetyChecker`]): | 
					
						
						|  | Classification module that estimates whether generated images could be considered offensive or harmful. | 
					
						
						|  | Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | 
					
						
						|  | about a model's potential harms. | 
					
						
						|  | feature_extractor ([`~transformers.CLIPImageProcessor`]): | 
					
						
						|  | A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_cpu_offload_seq = "text_encoder->unet->vae" | 
					
						
						|  | _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] | 
					
						
						|  | _exclude_from_cpu_offload = ["safety_checker"] | 
					
						
						|  | _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], | 
					
						
						|  | scheduler: KarrasDiffusionSchedulers, | 
					
						
						|  | safety_checker: StableDiffusionSafetyChecker, | 
					
						
						|  | feature_extractor: CLIPImageProcessor, | 
					
						
						|  | image_encoder: CLIPVisionModelWithProjection = None, | 
					
						
						|  | requires_safety_checker: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if safety_checker is None and requires_safety_checker: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | 
					
						
						|  | " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | 
					
						
						|  | " results in services or applications open to the public. Both the diffusers team and Hugging Face" | 
					
						
						|  | " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | 
					
						
						|  | " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | 
					
						
						|  | " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if safety_checker is not None and feature_extractor is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | 
					
						
						|  | " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(controlnet, (list, tuple)): | 
					
						
						|  | controlnet = MultiControlNetModel(controlnet) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | controlnet=controlnet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | safety_checker=safety_checker, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | image_encoder=image_encoder, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) | 
					
						
						|  | self.control_image_processor = VaeImageProcessor( | 
					
						
						|  | vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False | 
					
						
						|  | ) | 
					
						
						|  | self.register_to_config(requires_safety_checker=requires_safety_checker) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | 
					
						
						|  | deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds_tuple = self.encode_prompt( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | lora_scale: Optional[float] = None, | 
					
						
						|  | clip_skip: Optional[int] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | lora_scale (`float`, *optional*): | 
					
						
						|  | A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
						
						|  | clip_skip (`int`, *optional*): | 
					
						
						|  | Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
						
						|  | the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): | 
					
						
						|  | self._lora_scale = lora_scale | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | 
					
						
						|  | else: | 
					
						
						|  | scale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode( | 
					
						
						|  | untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
						
						|  | ) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = text_inputs.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | if clip_skip is None: | 
					
						
						|  | prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | 
					
						
						|  | prompt_embeds = prompt_embeds[0] | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds = self.text_encoder( | 
					
						
						|  | text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None: | 
					
						
						|  | prompt_embeds_dtype = self.text_encoder.dtype | 
					
						
						|  | elif self.unet is not None: | 
					
						
						|  | prompt_embeds_dtype = self.unet.dtype | 
					
						
						|  | else: | 
					
						
						|  | prompt_embeds_dtype = prompt_embeds.dtype | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if negative_prompt is None: | 
					
						
						|  | uncond_tokens = [""] * batch_size | 
					
						
						|  | elif prompt is not None and type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = negative_prompt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self, TextualInversionLoaderMixin): | 
					
						
						|  | uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | uncond_tokens, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = uncond_input.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = self.text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | if self.text_encoder is not None: | 
					
						
						|  | if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
						
						|  |  | 
					
						
						|  | unscale_lora_layers(self.text_encoder, lora_scale) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, negative_prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | 
					
						
						|  | dtype = next(self.image_encoder.parameters()).dtype | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(image, torch.Tensor): | 
					
						
						|  | image = self.feature_extractor(image, return_tensors="pt").pixel_values | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | 
					
						
						|  | image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  | uncond_image_enc_hidden_states = self.image_encoder( | 
					
						
						|  | torch.zeros_like(image), output_hidden_states=True | 
					
						
						|  | ).hidden_states[-2] | 
					
						
						|  | uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | 
					
						
						|  | num_images_per_prompt, dim=0 | 
					
						
						|  | ) | 
					
						
						|  | return image_enc_hidden_states, uncond_image_enc_hidden_states | 
					
						
						|  | else: | 
					
						
						|  | image_embeds = self.image_encoder(image).image_embeds | 
					
						
						|  | image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  | uncond_image_embeds = torch.zeros_like(image_embeds) | 
					
						
						|  |  | 
					
						
						|  | return image_embeds, uncond_image_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_ip_adapter_image_embeds( | 
					
						
						|  | self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance | 
					
						
						|  | ): | 
					
						
						|  | image_embeds = [] | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | negative_image_embeds = [] | 
					
						
						|  | if ip_adapter_image_embeds is None: | 
					
						
						|  | if not isinstance(ip_adapter_image, list): | 
					
						
						|  | ip_adapter_image = [ip_adapter_image] | 
					
						
						|  |  | 
					
						
						|  | if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for single_ip_adapter_image, image_proj_layer in zip( | 
					
						
						|  | ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | 
					
						
						|  | ): | 
					
						
						|  | output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | 
					
						
						|  | single_image_embeds, single_negative_image_embeds = self.encode_image( | 
					
						
						|  | single_ip_adapter_image, device, 1, output_hidden_state | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image_embeds.append(single_image_embeds[None, :]) | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | negative_image_embeds.append(single_negative_image_embeds[None, :]) | 
					
						
						|  | else: | 
					
						
						|  | for single_image_embeds in ip_adapter_image_embeds: | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) | 
					
						
						|  | negative_image_embeds.append(single_negative_image_embeds) | 
					
						
						|  | image_embeds.append(single_image_embeds) | 
					
						
						|  |  | 
					
						
						|  | ip_adapter_image_embeds = [] | 
					
						
						|  | for i, single_image_embeds in enumerate(image_embeds): | 
					
						
						|  | single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) | 
					
						
						|  | single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) | 
					
						
						|  |  | 
					
						
						|  | single_image_embeds = single_image_embeds.to(device=device) | 
					
						
						|  | ip_adapter_image_embeds.append(single_image_embeds) | 
					
						
						|  |  | 
					
						
						|  | return ip_adapter_image_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def run_safety_checker(self, image, device, dtype): | 
					
						
						|  | if self.safety_checker is None: | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  | else: | 
					
						
						|  | if torch.is_tensor(image): | 
					
						
						|  | feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | 
					
						
						|  | else: | 
					
						
						|  | feature_extractor_input = self.image_processor.numpy_to_pil(image) | 
					
						
						|  | safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | 
					
						
						|  | image, has_nsfw_concept = self.safety_checker( | 
					
						
						|  | images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | 
					
						
						|  | ) | 
					
						
						|  | return image, has_nsfw_concept | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def decode_latents(self, latents): | 
					
						
						|  | deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | 
					
						
						|  | deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  |  | 
					
						
						|  | latents = 1 / self.vae.config.scaling_factor * latents | 
					
						
						|  | image = self.vae.decode(latents, return_dict=False)[0] | 
					
						
						|  | image = (image / 2 + 0.5).clamp(0, 1) | 
					
						
						|  |  | 
					
						
						|  | image = image.cpu().permute(0, 2, 3, 1).float().numpy() | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | image, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds=None, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | ip_adapter_image=None, | 
					
						
						|  | ip_adapter_image_embeds=None, | 
					
						
						|  | controlnet_conditioning_scale=1.0, | 
					
						
						|  | control_guidance_start=0.0, | 
					
						
						|  | control_guidance_end=1.0, | 
					
						
						|  | callback_on_step_end_tensor_inputs=None, | 
					
						
						|  | ): | 
					
						
						|  | if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
						
						|  | f" {type(callback_steps)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if callback_on_step_end_tensor_inputs is not None and not all( | 
					
						
						|  | k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
						
						|  | if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
						
						|  | f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
						
						|  | f" {negative_prompt_embeds.shape}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.controlnet, MultiControlNetModel): | 
					
						
						|  | if isinstance(prompt, list): | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" | 
					
						
						|  | " prompts. The conditionings will be fixed across the prompts." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | 
					
						
						|  | self.controlnet, torch._dynamo.eval_frame.OptimizedModule | 
					
						
						|  | ) | 
					
						
						|  | if ( | 
					
						
						|  | isinstance(self.controlnet, ControlNetModel) | 
					
						
						|  | or is_compiled | 
					
						
						|  | and isinstance(self.controlnet._orig_mod, ControlNetModel) | 
					
						
						|  | ): | 
					
						
						|  | self.check_image(image, prompt, prompt_embeds) | 
					
						
						|  | elif ( | 
					
						
						|  | isinstance(self.controlnet, MultiControlNetModel) | 
					
						
						|  | or is_compiled | 
					
						
						|  | and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | 
					
						
						|  | ): | 
					
						
						|  | if not isinstance(image, list): | 
					
						
						|  | raise TypeError("For multiple controlnets: `image` must be type `list`") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif any(isinstance(i, list) for i in image): | 
					
						
						|  | raise ValueError("A single batch of multiple conditionings are supported at the moment.") | 
					
						
						|  | elif len(image) != len(self.controlnet.nets): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for image_ in image: | 
					
						
						|  | self.check_image(image_, prompt, prompt_embeds) | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | isinstance(self.controlnet, ControlNetModel) | 
					
						
						|  | or is_compiled | 
					
						
						|  | and isinstance(self.controlnet._orig_mod, ControlNetModel) | 
					
						
						|  | ): | 
					
						
						|  | if not isinstance(controlnet_conditioning_scale, float): | 
					
						
						|  | raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") | 
					
						
						|  | elif ( | 
					
						
						|  | isinstance(self.controlnet, MultiControlNetModel) | 
					
						
						|  | or is_compiled | 
					
						
						|  | and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | 
					
						
						|  | ): | 
					
						
						|  | if isinstance(controlnet_conditioning_scale, list): | 
					
						
						|  | if any(isinstance(i, list) for i in controlnet_conditioning_scale): | 
					
						
						|  | raise ValueError("A single batch of multiple conditionings are supported at the moment.") | 
					
						
						|  | elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( | 
					
						
						|  | self.controlnet.nets | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | 
					
						
						|  | " the same length as the number of controlnets" | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  | if len(control_guidance_start) != len(control_guidance_end): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.controlnet, MultiControlNetModel): | 
					
						
						|  | if len(control_guidance_start) != len(self.controlnet.nets): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for start, end in zip(control_guidance_start, control_guidance_end): | 
					
						
						|  | if start >= end: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." | 
					
						
						|  | ) | 
					
						
						|  | if start < 0.0: | 
					
						
						|  | raise ValueError(f"control guidance start: {start} can't be smaller than 0.") | 
					
						
						|  | if end > 1.0: | 
					
						
						|  | raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") | 
					
						
						|  |  | 
					
						
						|  | if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if ip_adapter_image_embeds is not None: | 
					
						
						|  | if not isinstance(ip_adapter_image_embeds, list): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" | 
					
						
						|  | ) | 
					
						
						|  | elif ip_adapter_image_embeds[0].ndim not in [3, 4]: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_image(self, image, prompt, prompt_embeds): | 
					
						
						|  | image_is_pil = isinstance(image, PIL.Image.Image) | 
					
						
						|  | image_is_tensor = isinstance(image, torch.Tensor) | 
					
						
						|  | image_is_np = isinstance(image, np.ndarray) | 
					
						
						|  | image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | 
					
						
						|  | image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | 
					
						
						|  | image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | not image_is_pil | 
					
						
						|  | and not image_is_tensor | 
					
						
						|  | and not image_is_np | 
					
						
						|  | and not image_is_pil_list | 
					
						
						|  | and not image_is_tensor_list | 
					
						
						|  | and not image_is_np_list | 
					
						
						|  | ): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if image_is_pil: | 
					
						
						|  | image_batch_size = 1 | 
					
						
						|  | else: | 
					
						
						|  | image_batch_size = len(image) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | prompt_batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | prompt_batch_size = len(prompt) | 
					
						
						|  | elif prompt_embeds is not None: | 
					
						
						|  | prompt_batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if image_batch_size != 1 and image_batch_size != prompt_batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_control_image( | 
					
						
						|  | self, | 
					
						
						|  | image, | 
					
						
						|  | width, | 
					
						
						|  | height, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | device, | 
					
						
						|  | dtype, | 
					
						
						|  | do_classifier_free_guidance=False, | 
					
						
						|  | guess_mode=False, | 
					
						
						|  | ): | 
					
						
						|  | image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | 
					
						
						|  | image_batch_size = image.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if image_batch_size == 1: | 
					
						
						|  | repeat_by = batch_size | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | repeat_by = num_images_per_prompt | 
					
						
						|  |  | 
					
						
						|  | image = image.repeat_interleave(repeat_by, dim=0) | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and not guess_mode: | 
					
						
						|  | image = torch.cat([image] * 2) | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_timesteps(self, num_inference_steps, strength, device): | 
					
						
						|  |  | 
					
						
						|  | init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | t_start = max(num_inference_steps - init_timestep, 0) | 
					
						
						|  | timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | 
					
						
						|  | if hasattr(self.scheduler, "set_begin_index"): | 
					
						
						|  | self.scheduler.set_begin_index(t_start * self.scheduler.order) | 
					
						
						|  |  | 
					
						
						|  | return timesteps, num_inference_steps - t_start | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): | 
					
						
						|  | if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | batch_size = batch_size * num_images_per_prompt | 
					
						
						|  |  | 
					
						
						|  | if image.shape[1] == 4: | 
					
						
						|  | init_latents = image | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(generator, list): | 
					
						
						|  | if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: | 
					
						
						|  | image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) | 
					
						
						|  | elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} " | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | init_latents = [ | 
					
						
						|  | retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | 
					
						
						|  | for i in range(batch_size) | 
					
						
						|  | ] | 
					
						
						|  | init_latents = torch.cat(init_latents, dim=0) | 
					
						
						|  | else: | 
					
						
						|  | init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | 
					
						
						|  |  | 
					
						
						|  | init_latents = self.vae.config.scaling_factor * init_latents | 
					
						
						|  |  | 
					
						
						|  | if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | 
					
						
						|  |  | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" | 
					
						
						|  | " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | 
					
						
						|  | " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | 
					
						
						|  | " your script to pass as many initial images as text prompts to suppress this warning." | 
					
						
						|  | ) | 
					
						
						|  | deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | 
					
						
						|  | additional_image_per_prompt = batch_size // init_latents.shape[0] | 
					
						
						|  | init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | 
					
						
						|  | elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | init_latents = torch.cat([init_latents], dim=0) | 
					
						
						|  |  | 
					
						
						|  | shape = init_latents.shape | 
					
						
						|  | noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | 
					
						
						|  | latents = init_latents | 
					
						
						|  |  | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def guidance_scale(self): | 
					
						
						|  | return self._guidance_scale | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def clip_skip(self): | 
					
						
						|  | return self._clip_skip | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def do_classifier_free_guidance(self): | 
					
						
						|  | return self._guidance_scale > 1 | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def cross_attention_kwargs(self): | 
					
						
						|  | return self._cross_attention_kwargs | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_timesteps(self): | 
					
						
						|  | return self._num_timesteps | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def interrupt(self): | 
					
						
						|  | return self._interrupt | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | image: PipelineImageInput = None, | 
					
						
						|  | control_image: PipelineImageInput = None, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | strength: float = 0.8, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | guidance_scale: float = 7.5, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.Tensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | ip_adapter_image: Optional[PipelineImageInput] = None, | 
					
						
						|  | ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | controlnet_conditioning_scale: Union[float, List[float]] = 0.8, | 
					
						
						|  | guess_mode: bool = False, | 
					
						
						|  | control_guidance_start: Union[float, List[float]] = 0.0, | 
					
						
						|  | control_guidance_end: Union[float, List[float]] = 1.0, | 
					
						
						|  | clip_skip: Optional[int] = None, | 
					
						
						|  | callback_on_step_end: Optional[ | 
					
						
						|  | Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | 
					
						
						|  | ] = None, | 
					
						
						|  | callback_on_step_end_tensor_inputs: List[str] = ["latents"], | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | The call function to the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | 
					
						
						|  | image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | 
					
						
						|  | `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | 
					
						
						|  | The initial image to be used as the starting point for the image generation process. Can also accept | 
					
						
						|  | image latents as `image`, and if passing latents directly they are not encoded again. | 
					
						
						|  | control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | 
					
						
						|  | `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | 
					
						
						|  | The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | 
					
						
						|  | specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted | 
					
						
						|  | as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or | 
					
						
						|  | width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, | 
					
						
						|  | images must be passed as a list such that each element of the list can be correctly batched for input | 
					
						
						|  | to a single ControlNet. | 
					
						
						|  | height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
						
						|  | The height in pixels of the generated image. | 
					
						
						|  | width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
						
						|  | The width in pixels of the generated image. | 
					
						
						|  | strength (`float`, *optional*, defaults to 0.8): | 
					
						
						|  | Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | 
					
						
						|  | starting point and more noise is added the higher the `strength`. The number of denoising steps depends | 
					
						
						|  | on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | 
					
						
						|  | process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | 
					
						
						|  | essentially ignores `image`. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
						
						|  | A higher guidance scale value encourages the model to generate images closely linked to the text | 
					
						
						|  | `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide what to not include in image generation. If not defined, you need to | 
					
						
						|  | pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (Ξ·) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | 
					
						
						|  | to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | 
					
						
						|  | generation deterministic. | 
					
						
						|  | latents (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor is generated by sampling using the supplied random `generator`. | 
					
						
						|  | prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | 
					
						
						|  | provided, text embeddings are generated from the `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | 
					
						
						|  | not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | 
					
						
						|  | ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | 
					
						
						|  | ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | 
					
						
						|  | Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | 
					
						
						|  | IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | 
					
						
						|  | contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | 
					
						
						|  | provided, embeddings are computed from the `ip_adapter_image` input argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generated image. Choose between `PIL.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
						
						|  | plain tuple. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | 
					
						
						|  | [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
						
						|  | controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | 
					
						
						|  | The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added | 
					
						
						|  | to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set | 
					
						
						|  | the corresponding scale as a list. | 
					
						
						|  | guess_mode (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | The ControlNet encoder tries to recognize the content of the input image even if you remove all | 
					
						
						|  | prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. | 
					
						
						|  | control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): | 
					
						
						|  | The percentage of total steps at which the ControlNet starts applying. | 
					
						
						|  | control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): | 
					
						
						|  | The percentage of total steps at which the ControlNet stops applying. | 
					
						
						|  | clip_skip (`int`, *optional*): | 
					
						
						|  | Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
						
						|  | the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
						
						|  | callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | 
					
						
						|  | A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | 
					
						
						|  | each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | 
					
						
						|  | DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | 
					
						
						|  | list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | 
					
						
						|  | callback_on_step_end_tensor_inputs (`List`, *optional*): | 
					
						
						|  | The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | 
					
						
						|  | will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | 
					
						
						|  | `._callback_tensor_inputs` attribute of your pipeline class. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
						
						|  | If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | 
					
						
						|  | otherwise a `tuple` is returned where the first element is a list with the generated images and the | 
					
						
						|  | second element is a list of `bool`s indicating whether the corresponding generated image contains | 
					
						
						|  | "not-safe-for-work" (nsfw) content. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | callback = kwargs.pop("callback", None) | 
					
						
						|  | callback_steps = kwargs.pop("callback_steps", None) | 
					
						
						|  |  | 
					
						
						|  | if callback is not None: | 
					
						
						|  | deprecate( | 
					
						
						|  | "callback", | 
					
						
						|  | "1.0.0", | 
					
						
						|  | "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | 
					
						
						|  | ) | 
					
						
						|  | if callback_steps is not None: | 
					
						
						|  | deprecate( | 
					
						
						|  | "callback_steps", | 
					
						
						|  | "1.0.0", | 
					
						
						|  | "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | 
					
						
						|  | callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | 
					
						
						|  |  | 
					
						
						|  | controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | 
					
						
						|  | control_guidance_start = len(control_guidance_end) * [control_guidance_start] | 
					
						
						|  | elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | 
					
						
						|  | control_guidance_end = len(control_guidance_start) * [control_guidance_end] | 
					
						
						|  | elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | 
					
						
						|  | mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 | 
					
						
						|  | control_guidance_start, control_guidance_end = ( | 
					
						
						|  | mult * [control_guidance_start], | 
					
						
						|  | mult * [control_guidance_end], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | prompt, | 
					
						
						|  | control_image, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | negative_prompt_embeds, | 
					
						
						|  | ip_adapter_image, | 
					
						
						|  | ip_adapter_image_embeds, | 
					
						
						|  | controlnet_conditioning_scale, | 
					
						
						|  | control_guidance_start, | 
					
						
						|  | control_guidance_end, | 
					
						
						|  | callback_on_step_end_tensor_inputs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self._guidance_scale = guidance_scale | 
					
						
						|  | self._clip_skip = clip_skip | 
					
						
						|  | self._cross_attention_kwargs = cross_attention_kwargs | 
					
						
						|  | self._interrupt = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  | if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | 
					
						
						|  | controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | 
					
						
						|  |  | 
					
						
						|  | global_pool_conditions = ( | 
					
						
						|  | controlnet.config.global_pool_conditions | 
					
						
						|  | if isinstance(controlnet, ControlNetModel) | 
					
						
						|  | else controlnet.nets[0].config.global_pool_conditions | 
					
						
						|  | ) | 
					
						
						|  | guess_mode = guess_mode or global_pool_conditions | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_encoder_lora_scale = ( | 
					
						
						|  | self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds, negative_prompt_embeds = self.encode_prompt( | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | self.do_classifier_free_guidance, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | lora_scale=text_encoder_lora_scale, | 
					
						
						|  | clip_skip=self.clip_skip, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.do_classifier_free_guidance: | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | 
					
						
						|  |  | 
					
						
						|  | if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | 
					
						
						|  | image_embeds = self.prepare_ip_adapter_image_embeds( | 
					
						
						|  | ip_adapter_image, | 
					
						
						|  | ip_adapter_image_embeds, | 
					
						
						|  | device, | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | self.do_classifier_free_guidance, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(controlnet, ControlNetModel): | 
					
						
						|  | control_image = self.prepare_control_image( | 
					
						
						|  | image=control_image, | 
					
						
						|  | width=width, | 
					
						
						|  | height=height, | 
					
						
						|  | batch_size=batch_size * num_images_per_prompt, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=controlnet.dtype, | 
					
						
						|  | do_classifier_free_guidance=self.do_classifier_free_guidance, | 
					
						
						|  | guess_mode=guess_mode, | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(controlnet, MultiControlNetModel): | 
					
						
						|  | control_images = [] | 
					
						
						|  |  | 
					
						
						|  | for control_image_ in control_image: | 
					
						
						|  | control_image_ = self.prepare_control_image( | 
					
						
						|  | image=control_image_, | 
					
						
						|  | width=width, | 
					
						
						|  | height=height, | 
					
						
						|  | batch_size=batch_size * num_images_per_prompt, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=controlnet.dtype, | 
					
						
						|  | do_classifier_free_guidance=self.do_classifier_free_guidance, | 
					
						
						|  | guess_mode=guess_mode, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | control_images.append(control_image_) | 
					
						
						|  |  | 
					
						
						|  | control_image = control_images | 
					
						
						|  | else: | 
					
						
						|  | assert False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device=device) | 
					
						
						|  | timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | 
					
						
						|  | latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | 
					
						
						|  | self._num_timesteps = len(timesteps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | image, | 
					
						
						|  | latent_timestep, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | added_cond_kwargs = ( | 
					
						
						|  | {"image_embeds": image_embeds} | 
					
						
						|  | if ip_adapter_image is not None or ip_adapter_image_embeds is not None | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | controlnet_keep = [] | 
					
						
						|  | for i in range(len(timesteps)): | 
					
						
						|  | keeps = [ | 
					
						
						|  | 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | 
					
						
						|  | for s, e in zip(control_guidance_start, control_guidance_end) | 
					
						
						|  | ] | 
					
						
						|  | controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  | if self.interrupt: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if guess_mode and self.do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | control_model_input = latents | 
					
						
						|  | control_model_input = self.scheduler.scale_model_input(control_model_input, t) | 
					
						
						|  | controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | 
					
						
						|  | else: | 
					
						
						|  | control_model_input = latent_model_input | 
					
						
						|  | controlnet_prompt_embeds = prompt_embeds | 
					
						
						|  |  | 
					
						
						|  | if isinstance(controlnet_keep[i], list): | 
					
						
						|  | cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | 
					
						
						|  | else: | 
					
						
						|  | controlnet_cond_scale = controlnet_conditioning_scale | 
					
						
						|  | if isinstance(controlnet_cond_scale, list): | 
					
						
						|  | controlnet_cond_scale = controlnet_cond_scale[0] | 
					
						
						|  | cond_scale = controlnet_cond_scale * controlnet_keep[i] | 
					
						
						|  |  | 
					
						
						|  | down_block_res_samples, mid_block_res_sample = self.controlnet( | 
					
						
						|  | control_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=controlnet_prompt_embeds, | 
					
						
						|  | controlnet_cond=control_image, | 
					
						
						|  | conditioning_scale=cond_scale, | 
					
						
						|  | guess_mode=guess_mode, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if guess_mode and self.do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | 
					
						
						|  | mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | cross_attention_kwargs=self.cross_attention_kwargs, | 
					
						
						|  | down_block_additional_residuals=down_block_res_samples, | 
					
						
						|  | mid_block_additional_residual=mid_block_res_sample, | 
					
						
						|  | added_cond_kwargs=added_cond_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | 
					
						
						|  |  | 
					
						
						|  | if callback_on_step_end is not None: | 
					
						
						|  | callback_kwargs = {} | 
					
						
						|  | for k in callback_on_step_end_tensor_inputs: | 
					
						
						|  | callback_kwargs[k] = locals()[k] | 
					
						
						|  | callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | 
					
						
						|  |  | 
					
						
						|  | latents = callback_outputs.pop("latents", latents) | 
					
						
						|  | prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | 
					
						
						|  | negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | step_idx = i // getattr(self.scheduler, "order", 1) | 
					
						
						|  | callback(step_idx, t, latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | 
					
						
						|  | self.unet.to("cpu") | 
					
						
						|  | self.controlnet.to("cpu") | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | if not output_type == "latent": | 
					
						
						|  | image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ | 
					
						
						|  | 0 | 
					
						
						|  | ] | 
					
						
						|  | image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | 
					
						
						|  | else: | 
					
						
						|  | image = latents | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  |  | 
					
						
						|  | if has_nsfw_concept is None: | 
					
						
						|  | do_denormalize = [True] * image.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | 
					
						
						|  |  | 
					
						
						|  | image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.maybe_free_model_hooks() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image, has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | 
					
						
						|  |  |