|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import inspect |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
AutoencoderTiny, |
|
AutoPipelineForImage2Image, |
|
EulerDiscreteScheduler, |
|
StableDiffusionImg2ImgPipeline, |
|
StableDiffusionPAGImg2ImgPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import ( |
|
IMAGE_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, |
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
IPAdapterTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionPAGImg2ImgPipelineFastTests( |
|
IPAdapterTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = StableDiffusionPAGImg2ImgPipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) - {"height", "width"} |
|
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS |
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = EulerDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
timestep_spacing="leading", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=128, |
|
) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_tiny_autoencoder(self): |
|
return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image / 2 + 0.5 |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"pag_scale": 0.9, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_pag_disable_enable(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe_sd = StableDiffusionImg2ImgPipeline(**components) |
|
pipe_sd = pipe_sd.to(device) |
|
pipe_sd.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["pag_scale"] |
|
assert ( |
|
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters |
|
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." |
|
out = pipe_sd(**inputs).images[0, -3:, -3:, -1] |
|
|
|
|
|
pipe_pag = self.pipeline_class(**components) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["pag_scale"] = 0.0 |
|
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 |
|
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 |
|
|
|
def test_pag_inference(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe_pag(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == ( |
|
1, |
|
32, |
|
32, |
|
3, |
|
), f"the shape of the output image should be (1, 32, 32, 3) but got {image.shape}" |
|
|
|
expected_slice = np.array( |
|
[0.44203848, 0.49598145, 0.42248967, 0.6707724, 0.5683791, 0.43603387, 0.58316565, 0.60077155, 0.5174199] |
|
) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionPAGImg2ImgPipelineIntegrationTests(unittest.TestCase): |
|
pipeline_class = StableDiffusionPAGImg2ImgPipeline |
|
repo_id = "Jiali/stable-diffusion-1.5" |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_img2img/sketch-mountains-input.png" |
|
) |
|
inputs = { |
|
"prompt": "a fantasy landscape, concept art, high resolution", |
|
"image": init_image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"strength": 0.75, |
|
"guidance_scale": 7.5, |
|
"pag_scale": 3.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_pag_cfg(self): |
|
pipeline = AutoPipelineForImage2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) |
|
pipeline.enable_model_cpu_offload() |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipeline(**inputs).images |
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
assert image.shape == (1, 512, 512, 3) |
|
print(image_slice.flatten()) |
|
expected_slice = np.array( |
|
[0.58251953, 0.5722656, 0.5683594, 0.55029297, 0.52001953, 0.52001953, 0.49951172, 0.45410156, 0.50146484] |
|
) |
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
), f"output is different from expected, {image_slice.flatten()}" |
|
|
|
def test_pag_uncond(self): |
|
pipeline = AutoPipelineForImage2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) |
|
pipeline.enable_model_cpu_offload() |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device, guidance_scale=0.0) |
|
image = pipeline(**inputs).images |
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array( |
|
[0.5986328, 0.52441406, 0.3972168, 0.4741211, 0.34985352, 0.22705078, 0.4128418, 0.2866211, 0.31713867] |
|
) |
|
print(image_slice.flatten()) |
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
), f"output is different from expected, {image_slice.flatten()}" |
|
|