|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import T5EncoderModel, T5TokenizerFast |
|
|
|
from ...callbacks import MultiPipelineCallbacks, PipelineCallback |
|
from ...loaders import FromSingleFileMixin |
|
from ...models.autoencoders import AutoencoderKLLTXVideo |
|
from ...models.transformers import LTXVideoTransformer3DModel |
|
from ...schedulers import FlowMatchEulerDiscreteScheduler |
|
from ...utils import is_torch_xla_available, logging, replace_example_docstring |
|
from ...utils.torch_utils import randn_tensor |
|
from ...video_processor import VideoProcessor |
|
from ..pipeline_utils import DiffusionPipeline |
|
from .pipeline_output import LTXPipelineOutput |
|
|
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import LTXPipeline |
|
>>> from diffusers.utils import export_to_video |
|
|
|
>>> pipe = LTXPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16) |
|
>>> pipe.to("cuda") |
|
|
|
>>> prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage" |
|
>>> negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted" |
|
|
|
>>> video = pipe( |
|
... prompt=prompt, |
|
... negative_prompt=negative_prompt, |
|
... width=704, |
|
... height=480, |
|
... num_frames=161, |
|
... num_inference_steps=50, |
|
... ).frames[0] |
|
>>> export_to_video(video, "output.mp4", fps=24) |
|
``` |
|
""" |
|
|
|
|
|
|
|
def calculate_shift( |
|
image_seq_len, |
|
base_seq_len: int = 256, |
|
max_seq_len: int = 4096, |
|
base_shift: float = 0.5, |
|
max_shift: float = 1.16, |
|
): |
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) |
|
b = base_shift - m * base_seq_len |
|
mu = image_seq_len * m + b |
|
return mu |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class LTXPipeline(DiffusionPipeline, FromSingleFileMixin): |
|
r""" |
|
Pipeline for text-to-video generation. |
|
|
|
Reference: https://github.com/Lightricks/LTX-Video |
|
|
|
Args: |
|
transformer ([`LTXVideoTransformer3DModel`]): |
|
Conditional Transformer architecture to denoise the encoded video latents. |
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
vae ([`AutoencoderKLLTXVideo`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`T5EncoderModel`]): |
|
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically |
|
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer (`T5TokenizerFast`): |
|
Second Tokenizer of class |
|
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->transformer->vae" |
|
_optional_components = [] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
vae: AutoencoderKLLTXVideo, |
|
text_encoder: T5EncoderModel, |
|
tokenizer: T5TokenizerFast, |
|
transformer: LTXVideoTransformer3DModel, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
) |
|
|
|
self.vae_spatial_compression_ratio = self.vae.spatial_compression_ratio if hasattr(self, "vae") else 32 |
|
self.vae_temporal_compression_ratio = self.vae.temporal_compression_ratio if hasattr(self, "vae") else 8 |
|
self.transformer_spatial_patch_size = self.transformer.config.patch_size if hasattr(self, "transformer") else 1 |
|
self.transformer_temporal_patch_size = ( |
|
self.transformer.config.patch_size_t if hasattr(self, "transformer") else 1 |
|
) |
|
|
|
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio) |
|
self.tokenizer_max_length = ( |
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 128 |
|
) |
|
|
|
|
|
def _get_t5_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_videos_per_prompt: int = 1, |
|
max_sequence_length: int = 128, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_sequence_length, |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
prompt_attention_mask = text_inputs.attention_mask |
|
prompt_attention_mask = prompt_attention_mask.bool().to(device) |
|
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
f" {max_sequence_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) |
|
|
|
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1) |
|
prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1) |
|
|
|
return prompt_embeds, prompt_attention_mask |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
do_classifier_free_guidance: bool = True, |
|
num_videos_per_prompt: int = 1, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
max_sequence_length: int = 128, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): |
|
Whether to use classifier free guidance or not. |
|
num_videos_per_prompt (`int`, *optional*, defaults to 1): |
|
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
device: (`torch.device`, *optional*): |
|
torch device |
|
dtype: (`torch.dtype`, *optional*): |
|
torch dtype |
|
""" |
|
device = device or self._execution_device |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds( |
|
prompt=prompt, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
|
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
|
|
negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds( |
|
prompt=negative_prompt, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
callback_on_step_end_tensor_inputs=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
prompt_attention_mask=None, |
|
negative_prompt_attention_mask=None, |
|
): |
|
if height % 32 != 0 or width % 32 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.") |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if prompt_embeds is not None and prompt_attention_mask is None: |
|
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") |
|
|
|
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: |
|
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: |
|
raise ValueError( |
|
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" |
|
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" |
|
f" {negative_prompt_attention_mask.shape}." |
|
) |
|
|
|
@staticmethod |
|
def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor: |
|
|
|
|
|
|
|
|
|
batch_size, num_channels, num_frames, height, width = latents.shape |
|
post_patch_num_frames = num_frames // patch_size_t |
|
post_patch_height = height // patch_size |
|
post_patch_width = width // patch_size |
|
latents = latents.reshape( |
|
batch_size, |
|
-1, |
|
post_patch_num_frames, |
|
patch_size_t, |
|
post_patch_height, |
|
patch_size, |
|
post_patch_width, |
|
patch_size, |
|
) |
|
latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3) |
|
return latents |
|
|
|
@staticmethod |
|
def _unpack_latents( |
|
latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1 |
|
) -> torch.Tensor: |
|
|
|
|
|
|
|
batch_size = latents.size(0) |
|
latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size) |
|
latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3) |
|
return latents |
|
|
|
@staticmethod |
|
def _normalize_latents( |
|
latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0 |
|
) -> torch.Tensor: |
|
|
|
latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) |
|
latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) |
|
latents = (latents - latents_mean) * scaling_factor / latents_std |
|
return latents |
|
|
|
@staticmethod |
|
def _denormalize_latents( |
|
latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0 |
|
) -> torch.Tensor: |
|
|
|
latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) |
|
latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) |
|
latents = latents * latents_std / scaling_factor + latents_mean |
|
return latents |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size: int = 1, |
|
num_channels_latents: int = 128, |
|
height: int = 512, |
|
width: int = 704, |
|
num_frames: int = 161, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
if latents is not None: |
|
return latents.to(device=device, dtype=dtype) |
|
|
|
height = height // self.vae_spatial_compression_ratio |
|
width = width // self.vae_spatial_compression_ratio |
|
num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1 |
|
|
|
shape = (batch_size, num_channels_latents, num_frames, height, width) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = self._pack_latents( |
|
latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size |
|
) |
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1.0 |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
height: int = 512, |
|
width: int = 704, |
|
num_frames: int = 161, |
|
frame_rate: int = 25, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 3, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 128, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
height (`int`, defaults to `512`): |
|
The height in pixels of the generated image. This is set to 480 by default for the best results. |
|
width (`int`, defaults to `704`): |
|
The width in pixels of the generated image. This is set to 848 by default for the best results. |
|
num_frames (`int`, defaults to `161`): |
|
The number of video frames to generate |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, defaults to `3 `): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_videos_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of videos to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
prompt_attention_mask (`torch.Tensor`, *optional*): |
|
Pre-generated attention mask for text embeddings. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not |
|
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. |
|
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): |
|
Pre-generated attention mask for negative text embeddings. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to `128 `): |
|
Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ltx.LTXPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images. |
|
""" |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
|
|
self.check_inputs( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
prompt_attention_mask=prompt_attention_mask, |
|
negative_prompt_attention_mask=negative_prompt_attention_mask, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
( |
|
prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_embeds, |
|
negative_prompt_attention_mask, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
prompt_attention_mask=prompt_attention_mask, |
|
negative_prompt_attention_mask=negative_prompt_attention_mask, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
) |
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
num_frames, |
|
torch.float32, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1 |
|
latent_height = height // self.vae_spatial_compression_ratio |
|
latent_width = width // self.vae_spatial_compression_ratio |
|
video_sequence_length = latent_num_frames * latent_height * latent_width |
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
mu = calculate_shift( |
|
video_sequence_length, |
|
self.scheduler.config.base_image_seq_len, |
|
self.scheduler.config.max_image_seq_len, |
|
self.scheduler.config.base_shift, |
|
self.scheduler.config.max_shift, |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
sigmas=sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
latent_frame_rate = frame_rate / self.vae_temporal_compression_ratio |
|
rope_interpolation_scale = ( |
|
1 / latent_frame_rate, |
|
self.vae_spatial_compression_ratio, |
|
self.vae_spatial_compression_ratio, |
|
) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = latent_model_input.to(prompt_embeds.dtype) |
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep=timestep, |
|
encoder_attention_mask=prompt_attention_mask, |
|
num_frames=latent_num_frames, |
|
height=latent_height, |
|
width=latent_width, |
|
rope_interpolation_scale=rope_interpolation_scale, |
|
return_dict=False, |
|
)[0] |
|
noise_pred = noise_pred.float() |
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if output_type == "latent": |
|
video = latents |
|
else: |
|
latents = self._unpack_latents( |
|
latents, |
|
latent_num_frames, |
|
latent_height, |
|
latent_width, |
|
self.transformer_spatial_patch_size, |
|
self.transformer_temporal_patch_size, |
|
) |
|
latents = self._denormalize_latents( |
|
latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor |
|
) |
|
latents = latents.to(prompt_embeds.dtype) |
|
video = self.vae.decode(latents, return_dict=False)[0] |
|
video = self.video_processor.postprocess_video(video, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (video,) |
|
|
|
return LTXPipelineOutput(frames=video) |
|
|