|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | from collections import defaultdict | 
					
						
						|  | from contextlib import nullcontext | 
					
						
						|  | from pathlib import Path | 
					
						
						|  | from typing import Callable, Dict, Union | 
					
						
						|  |  | 
					
						
						|  | import safetensors | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from huggingface_hub.utils import validate_hf_hub_args | 
					
						
						|  | from torch import nn | 
					
						
						|  |  | 
					
						
						|  | from ..models.embeddings import ( | 
					
						
						|  | ImageProjection, | 
					
						
						|  | IPAdapterFaceIDImageProjection, | 
					
						
						|  | IPAdapterFaceIDPlusImageProjection, | 
					
						
						|  | IPAdapterFullImageProjection, | 
					
						
						|  | IPAdapterPlusImageProjection, | 
					
						
						|  | MultiIPAdapterImageProjection, | 
					
						
						|  | ) | 
					
						
						|  | from ..models.modeling_utils import load_model_dict_into_meta, load_state_dict | 
					
						
						|  | from ..utils import ( | 
					
						
						|  | USE_PEFT_BACKEND, | 
					
						
						|  | _get_model_file, | 
					
						
						|  | convert_unet_state_dict_to_peft, | 
					
						
						|  | deprecate, | 
					
						
						|  | get_adapter_name, | 
					
						
						|  | get_peft_kwargs, | 
					
						
						|  | is_accelerate_available, | 
					
						
						|  | is_peft_version, | 
					
						
						|  | is_torch_version, | 
					
						
						|  | logging, | 
					
						
						|  | ) | 
					
						
						|  | from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE, TEXT_ENCODER_NAME, UNET_NAME | 
					
						
						|  | from .utils import AttnProcsLayers | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_accelerate_available(): | 
					
						
						|  | from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin" | 
					
						
						|  | CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UNet2DConditionLoadersMixin: | 
					
						
						|  | """ | 
					
						
						|  | Load LoRA layers into a [`UNet2DCondtionModel`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | text_encoder_name = TEXT_ENCODER_NAME | 
					
						
						|  | unet_name = UNET_NAME | 
					
						
						|  |  | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  | def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be | 
					
						
						|  | defined in | 
					
						
						|  | [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py) | 
					
						
						|  | and be a `torch.nn.Module` class. Currently supported: LoRA, Custom Diffusion. For LoRA, one must install | 
					
						
						|  | `peft`: `pip install -U peft`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | Can be either: | 
					
						
						|  |  | 
					
						
						|  | - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | 
					
						
						|  | the Hub. | 
					
						
						|  | - A path to a directory (for example `./my_model_directory`) containing the model weights saved | 
					
						
						|  | with [`ModelMixin.save_pretrained`]. | 
					
						
						|  | - A [torch state | 
					
						
						|  | dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | 
					
						
						|  |  | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | subfolder (`str`, *optional*, defaults to `""`): | 
					
						
						|  | The subfolder location of a model file within a larger model repository on the Hub or locally. | 
					
						
						|  | network_alphas (`Dict[str, float]`): | 
					
						
						|  | The value of the network alpha used for stable learning and preventing underflow. This value has the | 
					
						
						|  | same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | 
					
						
						|  | link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | 
					
						
						|  | adapter_name (`str`, *optional*, defaults to None): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | weight_name (`str`, *optional*, defaults to None): | 
					
						
						|  | Name of the serialized state dict file. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import AutoPipelineForText2Image | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipeline = AutoPipelineForText2Image.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.unet.load_attn_procs( | 
					
						
						|  | "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic" | 
					
						
						|  | ) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | subfolder = kwargs.pop("subfolder", None) | 
					
						
						|  | weight_name = kwargs.pop("weight_name", None) | 
					
						
						|  | use_safetensors = kwargs.pop("use_safetensors", None) | 
					
						
						|  | adapter_name = kwargs.pop("adapter_name", None) | 
					
						
						|  | _pipeline = kwargs.pop("_pipeline", None) | 
					
						
						|  | network_alphas = kwargs.pop("network_alphas", None) | 
					
						
						|  | low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False) | 
					
						
						|  | allow_pickle = False | 
					
						
						|  |  | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<=", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if use_safetensors is None: | 
					
						
						|  | use_safetensors = True | 
					
						
						|  | allow_pickle = True | 
					
						
						|  |  | 
					
						
						|  | user_agent = { | 
					
						
						|  | "file_type": "attn_procs_weights", | 
					
						
						|  | "framework": "pytorch", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | model_file = None | 
					
						
						|  | if not isinstance(pretrained_model_name_or_path_or_dict, dict): | 
					
						
						|  |  | 
					
						
						|  | if (use_safetensors and weight_name is None) or ( | 
					
						
						|  | weight_name is not None and weight_name.endswith(".safetensors") | 
					
						
						|  | ): | 
					
						
						|  | try: | 
					
						
						|  | model_file = _get_model_file( | 
					
						
						|  | pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | ) | 
					
						
						|  | state_dict = safetensors.torch.load_file(model_file, device="cpu") | 
					
						
						|  | except IOError as e: | 
					
						
						|  | if not allow_pickle: | 
					
						
						|  | raise e | 
					
						
						|  |  | 
					
						
						|  | pass | 
					
						
						|  | if model_file is None: | 
					
						
						|  | model_file = _get_model_file( | 
					
						
						|  | pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weights_name=weight_name or LORA_WEIGHT_NAME, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | ) | 
					
						
						|  | state_dict = load_state_dict(model_file) | 
					
						
						|  | else: | 
					
						
						|  | state_dict = pretrained_model_name_or_path_or_dict | 
					
						
						|  |  | 
					
						
						|  | is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys()) | 
					
						
						|  | is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) | 
					
						
						|  | is_model_cpu_offload = False | 
					
						
						|  | is_sequential_cpu_offload = False | 
					
						
						|  |  | 
					
						
						|  | if is_lora: | 
					
						
						|  | deprecation_message = "Using the `load_attn_procs()` method has been deprecated and will be removed in a future version. Please use `load_lora_adapter()`." | 
					
						
						|  | deprecate("load_attn_procs", "0.40.0", deprecation_message) | 
					
						
						|  |  | 
					
						
						|  | if is_custom_diffusion: | 
					
						
						|  | attn_processors = self._process_custom_diffusion(state_dict=state_dict) | 
					
						
						|  | elif is_lora: | 
					
						
						|  | is_model_cpu_offload, is_sequential_cpu_offload = self._process_lora( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | unet_identifier_key=self.unet_name, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{model_file} does not seem to be in the correct format expected by Custom Diffusion training." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_custom_diffusion and _pipeline is not None: | 
					
						
						|  | is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline=_pipeline) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.set_attn_processor(attn_processors) | 
					
						
						|  | self.to(dtype=self.dtype, device=self.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_model_cpu_offload: | 
					
						
						|  | _pipeline.enable_model_cpu_offload() | 
					
						
						|  | elif is_sequential_cpu_offload: | 
					
						
						|  | _pipeline.enable_sequential_cpu_offload() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _process_custom_diffusion(self, state_dict): | 
					
						
						|  | from ..models.attention_processor import CustomDiffusionAttnProcessor | 
					
						
						|  |  | 
					
						
						|  | attn_processors = {} | 
					
						
						|  | custom_diffusion_grouped_dict = defaultdict(dict) | 
					
						
						|  | for key, value in state_dict.items(): | 
					
						
						|  | if len(value) == 0: | 
					
						
						|  | custom_diffusion_grouped_dict[key] = {} | 
					
						
						|  | else: | 
					
						
						|  | if "to_out" in key: | 
					
						
						|  | attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) | 
					
						
						|  | else: | 
					
						
						|  | attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:]) | 
					
						
						|  | custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value | 
					
						
						|  |  | 
					
						
						|  | for key, value_dict in custom_diffusion_grouped_dict.items(): | 
					
						
						|  | if len(value_dict) == 0: | 
					
						
						|  | attn_processors[key] = CustomDiffusionAttnProcessor( | 
					
						
						|  | train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1] | 
					
						
						|  | hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0] | 
					
						
						|  | train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False | 
					
						
						|  | attn_processors[key] = CustomDiffusionAttnProcessor( | 
					
						
						|  | train_kv=True, | 
					
						
						|  | train_q_out=train_q_out, | 
					
						
						|  | hidden_size=hidden_size, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | ) | 
					
						
						|  | attn_processors[key].load_state_dict(value_dict) | 
					
						
						|  |  | 
					
						
						|  | return attn_processors | 
					
						
						|  |  | 
					
						
						|  | def _process_lora( | 
					
						
						|  | self, state_dict, unet_identifier_key, network_alphas, adapter_name, _pipeline, low_cpu_mem_usage | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict | 
					
						
						|  |  | 
					
						
						|  | keys = list(state_dict.keys()) | 
					
						
						|  |  | 
					
						
						|  | unet_keys = [k for k in keys if k.startswith(unet_identifier_key)] | 
					
						
						|  | unet_state_dict = { | 
					
						
						|  | k.replace(f"{unet_identifier_key}.", ""): v for k, v in state_dict.items() if k in unet_keys | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if network_alphas is not None: | 
					
						
						|  | alpha_keys = [k for k in network_alphas.keys() if k.startswith(unet_identifier_key)] | 
					
						
						|  | network_alphas = { | 
					
						
						|  | k.replace(f"{unet_identifier_key}.", ""): v for k, v in network_alphas.items() if k in alpha_keys | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | is_model_cpu_offload = False | 
					
						
						|  | is_sequential_cpu_offload = False | 
					
						
						|  | state_dict_to_be_used = unet_state_dict if len(unet_state_dict) > 0 else state_dict | 
					
						
						|  |  | 
					
						
						|  | if len(state_dict_to_be_used) > 0: | 
					
						
						|  | if adapter_name in getattr(self, "peft_config", {}): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | state_dict = convert_unet_state_dict_to_peft(state_dict_to_be_used) | 
					
						
						|  |  | 
					
						
						|  | if network_alphas is not None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | network_alphas = convert_unet_state_dict_to_peft(network_alphas) | 
					
						
						|  |  | 
					
						
						|  | rank = {} | 
					
						
						|  | for key, val in state_dict.items(): | 
					
						
						|  | if "lora_B" in key: | 
					
						
						|  | rank[key] = val.shape[1] | 
					
						
						|  |  | 
					
						
						|  | lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True) | 
					
						
						|  | if "use_dora" in lora_config_kwargs: | 
					
						
						|  | if lora_config_kwargs["use_dora"]: | 
					
						
						|  | if is_peft_version("<", "0.9.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | if is_peft_version("<", "0.9.0"): | 
					
						
						|  | lora_config_kwargs.pop("use_dora") | 
					
						
						|  | lora_config = LoraConfig(**lora_config_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if adapter_name is None: | 
					
						
						|  | adapter_name = get_adapter_name(self) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline) | 
					
						
						|  | peft_kwargs = {} | 
					
						
						|  | if is_peft_version(">=", "0.13.1"): | 
					
						
						|  | peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage | 
					
						
						|  |  | 
					
						
						|  | inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs) | 
					
						
						|  | incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs) | 
					
						
						|  |  | 
					
						
						|  | warn_msg = "" | 
					
						
						|  | if incompatible_keys is not None: | 
					
						
						|  |  | 
					
						
						|  | unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | 
					
						
						|  | if unexpected_keys: | 
					
						
						|  | lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k] | 
					
						
						|  | if lora_unexpected_keys: | 
					
						
						|  | warn_msg = ( | 
					
						
						|  | f"Loading adapter weights from state_dict led to unexpected keys found in the model:" | 
					
						
						|  | f" {', '.join(lora_unexpected_keys)}. " | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | missing_keys = getattr(incompatible_keys, "missing_keys", None) | 
					
						
						|  | if missing_keys: | 
					
						
						|  | lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k] | 
					
						
						|  | if lora_missing_keys: | 
					
						
						|  | warn_msg += ( | 
					
						
						|  | f"Loading adapter weights from state_dict led to missing keys in the model:" | 
					
						
						|  | f" {', '.join(lora_missing_keys)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if warn_msg: | 
					
						
						|  | logger.warning(warn_msg) | 
					
						
						|  |  | 
					
						
						|  | return is_model_cpu_offload, is_sequential_cpu_offload | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def _optionally_disable_offloading(cls, _pipeline): | 
					
						
						|  | """ | 
					
						
						|  | Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | _pipeline (`DiffusionPipeline`): | 
					
						
						|  | The pipeline to disable offloading for. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | tuple: | 
					
						
						|  | A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True. | 
					
						
						|  | """ | 
					
						
						|  | is_model_cpu_offload = False | 
					
						
						|  | is_sequential_cpu_offload = False | 
					
						
						|  |  | 
					
						
						|  | if _pipeline is not None and _pipeline.hf_device_map is None: | 
					
						
						|  | for _, component in _pipeline.components.items(): | 
					
						
						|  | if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"): | 
					
						
						|  | if not is_model_cpu_offload: | 
					
						
						|  | is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload) | 
					
						
						|  | if not is_sequential_cpu_offload: | 
					
						
						|  | is_sequential_cpu_offload = ( | 
					
						
						|  | isinstance(component._hf_hook, AlignDevicesHook) | 
					
						
						|  | or hasattr(component._hf_hook, "hooks") | 
					
						
						|  | and isinstance(component._hf_hook.hooks[0], AlignDevicesHook) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logger.info( | 
					
						
						|  | "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." | 
					
						
						|  | ) | 
					
						
						|  | remove_hook_from_module(component, recurse=is_sequential_cpu_offload) | 
					
						
						|  |  | 
					
						
						|  | return (is_model_cpu_offload, is_sequential_cpu_offload) | 
					
						
						|  |  | 
					
						
						|  | def save_attn_procs( | 
					
						
						|  | self, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save attention processor layers to a directory so that it can be reloaded with the | 
					
						
						|  | [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save an attention processor to (will be created if it doesn't exist). | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or with `pickle`. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | import torch | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  |  | 
					
						
						|  | pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "CompVis/stable-diffusion-v1-4", | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin") | 
					
						
						|  | pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin") | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | from ..models.attention_processor import ( | 
					
						
						|  | CustomDiffusionAttnProcessor, | 
					
						
						|  | CustomDiffusionAttnProcessor2_0, | 
					
						
						|  | CustomDiffusionXFormersAttnProcessor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if os.path.isfile(save_directory): | 
					
						
						|  | logger.error(f"Provided path ({save_directory}) should be a directory, not a file") | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | is_custom_diffusion = any( | 
					
						
						|  | isinstance( | 
					
						
						|  | x, | 
					
						
						|  | (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor), | 
					
						
						|  | ) | 
					
						
						|  | for (_, x) in self.attn_processors.items() | 
					
						
						|  | ) | 
					
						
						|  | if is_custom_diffusion: | 
					
						
						|  | state_dict = self._get_custom_diffusion_state_dict() | 
					
						
						|  | if save_function is None and safe_serialization: | 
					
						
						|  |  | 
					
						
						|  | empty_state_dict = {k: v for k, v in state_dict.items() if not isinstance(v, torch.Tensor)} | 
					
						
						|  | if len(empty_state_dict) > 0: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Safetensors does not support saving dicts with non-tensor values. " | 
					
						
						|  | f"The following keys will be ignored: {empty_state_dict.keys()}" | 
					
						
						|  | ) | 
					
						
						|  | state_dict = {k: v for k, v in state_dict.items() if isinstance(v, torch.Tensor)} | 
					
						
						|  | else: | 
					
						
						|  | deprecation_message = "Using the `save_attn_procs()` method has been deprecated and will be removed in a future version. Please use `save_lora_adapter()`." | 
					
						
						|  | deprecate("save_attn_procs", "0.40.0", deprecation_message) | 
					
						
						|  |  | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for saving LoRAs using the `save_attn_procs()` method.") | 
					
						
						|  |  | 
					
						
						|  | from peft.utils import get_peft_model_state_dict | 
					
						
						|  |  | 
					
						
						|  | state_dict = get_peft_model_state_dict(self) | 
					
						
						|  |  | 
					
						
						|  | if save_function is None: | 
					
						
						|  | if safe_serialization: | 
					
						
						|  |  | 
					
						
						|  | def save_function(weights, filename): | 
					
						
						|  | return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | save_function = torch.save | 
					
						
						|  |  | 
					
						
						|  | os.makedirs(save_directory, exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  | if weight_name is None: | 
					
						
						|  | if safe_serialization: | 
					
						
						|  | weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE | 
					
						
						|  | else: | 
					
						
						|  | weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | save_path = Path(save_directory, weight_name).as_posix() | 
					
						
						|  | save_function(state_dict, save_path) | 
					
						
						|  | logger.info(f"Model weights saved in {save_path}") | 
					
						
						|  |  | 
					
						
						|  | def _get_custom_diffusion_state_dict(self): | 
					
						
						|  | from ..models.attention_processor import ( | 
					
						
						|  | CustomDiffusionAttnProcessor, | 
					
						
						|  | CustomDiffusionAttnProcessor2_0, | 
					
						
						|  | CustomDiffusionXFormersAttnProcessor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | model_to_save = AttnProcsLayers( | 
					
						
						|  | { | 
					
						
						|  | y: x | 
					
						
						|  | for (y, x) in self.attn_processors.items() | 
					
						
						|  | if isinstance( | 
					
						
						|  | x, | 
					
						
						|  | ( | 
					
						
						|  | CustomDiffusionAttnProcessor, | 
					
						
						|  | CustomDiffusionAttnProcessor2_0, | 
					
						
						|  | CustomDiffusionXFormersAttnProcessor, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | state_dict = model_to_save.state_dict() | 
					
						
						|  | for name, attn in self.attn_processors.items(): | 
					
						
						|  | if len(attn.state_dict()) == 0: | 
					
						
						|  | state_dict[name] = {} | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  | def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False): | 
					
						
						|  | if low_cpu_mem_usage: | 
					
						
						|  | if is_accelerate_available(): | 
					
						
						|  | from accelerate import init_empty_weights | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | low_cpu_mem_usage = False | 
					
						
						|  | logger.warning( | 
					
						
						|  | "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | 
					
						
						|  | " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | 
					
						
						|  | " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | 
					
						
						|  | " install accelerate\n```\n." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | 
					
						
						|  | raise NotImplementedError( | 
					
						
						|  | "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | 
					
						
						|  | " `low_cpu_mem_usage=False`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | updated_state_dict = {} | 
					
						
						|  | image_projection = None | 
					
						
						|  | init_context = init_empty_weights if low_cpu_mem_usage else nullcontext | 
					
						
						|  |  | 
					
						
						|  | if "proj.weight" in state_dict: | 
					
						
						|  |  | 
					
						
						|  | num_image_text_embeds = 4 | 
					
						
						|  | clip_embeddings_dim = state_dict["proj.weight"].shape[-1] | 
					
						
						|  | cross_attention_dim = state_dict["proj.weight"].shape[0] // 4 | 
					
						
						|  |  | 
					
						
						|  | with init_context(): | 
					
						
						|  | image_projection = ImageProjection( | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | image_embed_dim=clip_embeddings_dim, | 
					
						
						|  | num_image_text_embeds=num_image_text_embeds, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for key, value in state_dict.items(): | 
					
						
						|  | diffusers_name = key.replace("proj", "image_embeds") | 
					
						
						|  | updated_state_dict[diffusers_name] = value | 
					
						
						|  |  | 
					
						
						|  | elif "proj.3.weight" in state_dict: | 
					
						
						|  |  | 
					
						
						|  | clip_embeddings_dim = state_dict["proj.0.weight"].shape[0] | 
					
						
						|  | cross_attention_dim = state_dict["proj.3.weight"].shape[0] | 
					
						
						|  |  | 
					
						
						|  | with init_context(): | 
					
						
						|  | image_projection = IPAdapterFullImageProjection( | 
					
						
						|  | cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for key, value in state_dict.items(): | 
					
						
						|  | diffusers_name = key.replace("proj.0", "ff.net.0.proj") | 
					
						
						|  | diffusers_name = diffusers_name.replace("proj.2", "ff.net.2") | 
					
						
						|  | diffusers_name = diffusers_name.replace("proj.3", "norm") | 
					
						
						|  | updated_state_dict[diffusers_name] = value | 
					
						
						|  |  | 
					
						
						|  | elif "perceiver_resampler.proj_in.weight" in state_dict: | 
					
						
						|  |  | 
					
						
						|  | id_embeddings_dim = state_dict["proj.0.weight"].shape[1] | 
					
						
						|  | embed_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[0] | 
					
						
						|  | hidden_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[1] | 
					
						
						|  | output_dims = state_dict["perceiver_resampler.proj_out.weight"].shape[0] | 
					
						
						|  | heads = state_dict["perceiver_resampler.layers.0.0.to_q.weight"].shape[0] // 64 | 
					
						
						|  |  | 
					
						
						|  | with init_context(): | 
					
						
						|  | image_projection = IPAdapterFaceIDPlusImageProjection( | 
					
						
						|  | embed_dims=embed_dims, | 
					
						
						|  | output_dims=output_dims, | 
					
						
						|  | hidden_dims=hidden_dims, | 
					
						
						|  | heads=heads, | 
					
						
						|  | id_embeddings_dim=id_embeddings_dim, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for key, value in state_dict.items(): | 
					
						
						|  | diffusers_name = key.replace("perceiver_resampler.", "") | 
					
						
						|  | diffusers_name = diffusers_name.replace("0.to", "attn.to") | 
					
						
						|  | diffusers_name = diffusers_name.replace("0.1.0.", "0.ff.0.") | 
					
						
						|  | diffusers_name = diffusers_name.replace("0.1.1.weight", "0.ff.1.net.0.proj.weight") | 
					
						
						|  | diffusers_name = diffusers_name.replace("0.1.3.weight", "0.ff.1.net.2.weight") | 
					
						
						|  | diffusers_name = diffusers_name.replace("1.1.0.", "1.ff.0.") | 
					
						
						|  | diffusers_name = diffusers_name.replace("1.1.1.weight", "1.ff.1.net.0.proj.weight") | 
					
						
						|  | diffusers_name = diffusers_name.replace("1.1.3.weight", "1.ff.1.net.2.weight") | 
					
						
						|  | diffusers_name = diffusers_name.replace("2.1.0.", "2.ff.0.") | 
					
						
						|  | diffusers_name = diffusers_name.replace("2.1.1.weight", "2.ff.1.net.0.proj.weight") | 
					
						
						|  | diffusers_name = diffusers_name.replace("2.1.3.weight", "2.ff.1.net.2.weight") | 
					
						
						|  | diffusers_name = diffusers_name.replace("3.1.0.", "3.ff.0.") | 
					
						
						|  | diffusers_name = diffusers_name.replace("3.1.1.weight", "3.ff.1.net.0.proj.weight") | 
					
						
						|  | diffusers_name = diffusers_name.replace("3.1.3.weight", "3.ff.1.net.2.weight") | 
					
						
						|  | diffusers_name = diffusers_name.replace("layers.0.0", "layers.0.ln0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("layers.0.1", "layers.0.ln1") | 
					
						
						|  | diffusers_name = diffusers_name.replace("layers.1.0", "layers.1.ln0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("layers.1.1", "layers.1.ln1") | 
					
						
						|  | diffusers_name = diffusers_name.replace("layers.2.0", "layers.2.ln0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("layers.2.1", "layers.2.ln1") | 
					
						
						|  | diffusers_name = diffusers_name.replace("layers.3.0", "layers.3.ln0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("layers.3.1", "layers.3.ln1") | 
					
						
						|  |  | 
					
						
						|  | if "norm1" in diffusers_name: | 
					
						
						|  | updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value | 
					
						
						|  | elif "norm2" in diffusers_name: | 
					
						
						|  | updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value | 
					
						
						|  | elif "to_kv" in diffusers_name: | 
					
						
						|  | v_chunk = value.chunk(2, dim=0) | 
					
						
						|  | updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0] | 
					
						
						|  | updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1] | 
					
						
						|  | elif "to_out" in diffusers_name: | 
					
						
						|  | updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value | 
					
						
						|  | elif "proj.0.weight" == diffusers_name: | 
					
						
						|  | updated_state_dict["proj.net.0.proj.weight"] = value | 
					
						
						|  | elif "proj.0.bias" == diffusers_name: | 
					
						
						|  | updated_state_dict["proj.net.0.proj.bias"] = value | 
					
						
						|  | elif "proj.2.weight" == diffusers_name: | 
					
						
						|  | updated_state_dict["proj.net.2.weight"] = value | 
					
						
						|  | elif "proj.2.bias" == diffusers_name: | 
					
						
						|  | updated_state_dict["proj.net.2.bias"] = value | 
					
						
						|  | else: | 
					
						
						|  | updated_state_dict[diffusers_name] = value | 
					
						
						|  |  | 
					
						
						|  | elif "norm.weight" in state_dict: | 
					
						
						|  |  | 
					
						
						|  | id_embeddings_dim_in = state_dict["proj.0.weight"].shape[1] | 
					
						
						|  | id_embeddings_dim_out = state_dict["proj.0.weight"].shape[0] | 
					
						
						|  | multiplier = id_embeddings_dim_out // id_embeddings_dim_in | 
					
						
						|  | norm_layer = "norm.weight" | 
					
						
						|  | cross_attention_dim = state_dict[norm_layer].shape[0] | 
					
						
						|  | num_tokens = state_dict["proj.2.weight"].shape[0] // cross_attention_dim | 
					
						
						|  |  | 
					
						
						|  | with init_context(): | 
					
						
						|  | image_projection = IPAdapterFaceIDImageProjection( | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | image_embed_dim=id_embeddings_dim_in, | 
					
						
						|  | mult=multiplier, | 
					
						
						|  | num_tokens=num_tokens, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for key, value in state_dict.items(): | 
					
						
						|  | diffusers_name = key.replace("proj.0", "ff.net.0.proj") | 
					
						
						|  | diffusers_name = diffusers_name.replace("proj.2", "ff.net.2") | 
					
						
						|  | updated_state_dict[diffusers_name] = value | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | num_image_text_embeds = state_dict["latents"].shape[1] | 
					
						
						|  | embed_dims = state_dict["proj_in.weight"].shape[1] | 
					
						
						|  | output_dims = state_dict["proj_out.weight"].shape[0] | 
					
						
						|  | hidden_dims = state_dict["latents"].shape[2] | 
					
						
						|  | attn_key_present = any("attn" in k for k in state_dict) | 
					
						
						|  | heads = ( | 
					
						
						|  | state_dict["layers.0.attn.to_q.weight"].shape[0] // 64 | 
					
						
						|  | if attn_key_present | 
					
						
						|  | else state_dict["layers.0.0.to_q.weight"].shape[0] // 64 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with init_context(): | 
					
						
						|  | image_projection = IPAdapterPlusImageProjection( | 
					
						
						|  | embed_dims=embed_dims, | 
					
						
						|  | output_dims=output_dims, | 
					
						
						|  | hidden_dims=hidden_dims, | 
					
						
						|  | heads=heads, | 
					
						
						|  | num_queries=num_image_text_embeds, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for key, value in state_dict.items(): | 
					
						
						|  | diffusers_name = key.replace("0.to", "2.to") | 
					
						
						|  |  | 
					
						
						|  | diffusers_name = diffusers_name.replace("0.0.norm1", "0.ln0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("0.0.norm2", "0.ln1") | 
					
						
						|  | diffusers_name = diffusers_name.replace("1.0.norm1", "1.ln0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("1.0.norm2", "1.ln1") | 
					
						
						|  | diffusers_name = diffusers_name.replace("2.0.norm1", "2.ln0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("2.0.norm2", "2.ln1") | 
					
						
						|  | diffusers_name = diffusers_name.replace("3.0.norm1", "3.ln0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("3.0.norm2", "3.ln1") | 
					
						
						|  |  | 
					
						
						|  | if "to_kv" in diffusers_name: | 
					
						
						|  | parts = diffusers_name.split(".") | 
					
						
						|  | parts[2] = "attn" | 
					
						
						|  | diffusers_name = ".".join(parts) | 
					
						
						|  | v_chunk = value.chunk(2, dim=0) | 
					
						
						|  | updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0] | 
					
						
						|  | updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1] | 
					
						
						|  | elif "to_q" in diffusers_name: | 
					
						
						|  | parts = diffusers_name.split(".") | 
					
						
						|  | parts[2] = "attn" | 
					
						
						|  | diffusers_name = ".".join(parts) | 
					
						
						|  | updated_state_dict[diffusers_name] = value | 
					
						
						|  | elif "to_out" in diffusers_name: | 
					
						
						|  | parts = diffusers_name.split(".") | 
					
						
						|  | parts[2] = "attn" | 
					
						
						|  | diffusers_name = ".".join(parts) | 
					
						
						|  | updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value | 
					
						
						|  | else: | 
					
						
						|  | diffusers_name = diffusers_name.replace("0.1.0", "0.ff.0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("0.1.1", "0.ff.1.net.0.proj") | 
					
						
						|  | diffusers_name = diffusers_name.replace("0.1.3", "0.ff.1.net.2") | 
					
						
						|  |  | 
					
						
						|  | diffusers_name = diffusers_name.replace("1.1.0", "1.ff.0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("1.1.1", "1.ff.1.net.0.proj") | 
					
						
						|  | diffusers_name = diffusers_name.replace("1.1.3", "1.ff.1.net.2") | 
					
						
						|  |  | 
					
						
						|  | diffusers_name = diffusers_name.replace("2.1.0", "2.ff.0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("2.1.1", "2.ff.1.net.0.proj") | 
					
						
						|  | diffusers_name = diffusers_name.replace("2.1.3", "2.ff.1.net.2") | 
					
						
						|  |  | 
					
						
						|  | diffusers_name = diffusers_name.replace("3.1.0", "3.ff.0") | 
					
						
						|  | diffusers_name = diffusers_name.replace("3.1.1", "3.ff.1.net.0.proj") | 
					
						
						|  | diffusers_name = diffusers_name.replace("3.1.3", "3.ff.1.net.2") | 
					
						
						|  | updated_state_dict[diffusers_name] = value | 
					
						
						|  |  | 
					
						
						|  | if not low_cpu_mem_usage: | 
					
						
						|  | image_projection.load_state_dict(updated_state_dict, strict=True) | 
					
						
						|  | else: | 
					
						
						|  | load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype) | 
					
						
						|  |  | 
					
						
						|  | return image_projection | 
					
						
						|  |  | 
					
						
						|  | def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False): | 
					
						
						|  | from ..models.attention_processor import ( | 
					
						
						|  | IPAdapterAttnProcessor, | 
					
						
						|  | IPAdapterAttnProcessor2_0, | 
					
						
						|  | IPAdapterXFormersAttnProcessor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if low_cpu_mem_usage: | 
					
						
						|  | if is_accelerate_available(): | 
					
						
						|  | from accelerate import init_empty_weights | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | low_cpu_mem_usage = False | 
					
						
						|  | logger.warning( | 
					
						
						|  | "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | 
					
						
						|  | " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | 
					
						
						|  | " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | 
					
						
						|  | " install accelerate\n```\n." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | 
					
						
						|  | raise NotImplementedError( | 
					
						
						|  | "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | 
					
						
						|  | " `low_cpu_mem_usage=False`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_procs = {} | 
					
						
						|  | key_id = 1 | 
					
						
						|  | init_context = init_empty_weights if low_cpu_mem_usage else nullcontext | 
					
						
						|  | for name in self.attn_processors.keys(): | 
					
						
						|  | cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim | 
					
						
						|  | if name.startswith("mid_block"): | 
					
						
						|  | hidden_size = self.config.block_out_channels[-1] | 
					
						
						|  | elif name.startswith("up_blocks"): | 
					
						
						|  | block_id = int(name[len("up_blocks.")]) | 
					
						
						|  | hidden_size = list(reversed(self.config.block_out_channels))[block_id] | 
					
						
						|  | elif name.startswith("down_blocks"): | 
					
						
						|  | block_id = int(name[len("down_blocks.")]) | 
					
						
						|  | hidden_size = self.config.block_out_channels[block_id] | 
					
						
						|  |  | 
					
						
						|  | if cross_attention_dim is None or "motion_modules" in name: | 
					
						
						|  | attn_processor_class = self.attn_processors[name].__class__ | 
					
						
						|  | attn_procs[name] = attn_processor_class() | 
					
						
						|  | else: | 
					
						
						|  | if "XFormers" in str(self.attn_processors[name].__class__): | 
					
						
						|  | attn_processor_class = IPAdapterXFormersAttnProcessor | 
					
						
						|  | else: | 
					
						
						|  | attn_processor_class = ( | 
					
						
						|  | IPAdapterAttnProcessor2_0 | 
					
						
						|  | if hasattr(F, "scaled_dot_product_attention") | 
					
						
						|  | else IPAdapterAttnProcessor | 
					
						
						|  | ) | 
					
						
						|  | num_image_text_embeds = [] | 
					
						
						|  | for state_dict in state_dicts: | 
					
						
						|  | if "proj.weight" in state_dict["image_proj"]: | 
					
						
						|  |  | 
					
						
						|  | num_image_text_embeds += [4] | 
					
						
						|  | elif "proj.3.weight" in state_dict["image_proj"]: | 
					
						
						|  |  | 
					
						
						|  | num_image_text_embeds += [257] | 
					
						
						|  | elif "perceiver_resampler.proj_in.weight" in state_dict["image_proj"]: | 
					
						
						|  |  | 
					
						
						|  | num_image_text_embeds += [4] | 
					
						
						|  | elif "norm.weight" in state_dict["image_proj"]: | 
					
						
						|  |  | 
					
						
						|  | num_image_text_embeds += [4] | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]] | 
					
						
						|  |  | 
					
						
						|  | with init_context(): | 
					
						
						|  | attn_procs[name] = attn_processor_class( | 
					
						
						|  | hidden_size=hidden_size, | 
					
						
						|  | cross_attention_dim=cross_attention_dim, | 
					
						
						|  | scale=1.0, | 
					
						
						|  | num_tokens=num_image_text_embeds, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | value_dict = {} | 
					
						
						|  | for i, state_dict in enumerate(state_dicts): | 
					
						
						|  | value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]}) | 
					
						
						|  | value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]}) | 
					
						
						|  |  | 
					
						
						|  | if not low_cpu_mem_usage: | 
					
						
						|  | attn_procs[name].load_state_dict(value_dict) | 
					
						
						|  | else: | 
					
						
						|  | device = next(iter(value_dict.values())).device | 
					
						
						|  | dtype = next(iter(value_dict.values())).dtype | 
					
						
						|  | load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | key_id += 2 | 
					
						
						|  |  | 
					
						
						|  | return attn_procs | 
					
						
						|  |  | 
					
						
						|  | def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False): | 
					
						
						|  | if not isinstance(state_dicts, list): | 
					
						
						|  | state_dicts = [state_dicts] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | self.encoder_hid_proj is not None | 
					
						
						|  | and self.config.encoder_hid_dim_type == "text_proj" | 
					
						
						|  | and not hasattr(self, "text_encoder_hid_proj") | 
					
						
						|  | ): | 
					
						
						|  | self.text_encoder_hid_proj = self.encoder_hid_proj | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.encoder_hid_proj = None | 
					
						
						|  |  | 
					
						
						|  | attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage) | 
					
						
						|  | self.set_attn_processor(attn_procs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_projection_layers = [] | 
					
						
						|  | for state_dict in state_dicts: | 
					
						
						|  | image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers( | 
					
						
						|  | state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage | 
					
						
						|  | ) | 
					
						
						|  | image_projection_layers.append(image_projection_layer) | 
					
						
						|  |  | 
					
						
						|  | self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) | 
					
						
						|  | self.config.encoder_hid_dim_type = "ip_image_proj" | 
					
						
						|  |  | 
					
						
						|  | self.to(dtype=self.dtype, device=self.device) | 
					
						
						|  |  | 
					
						
						|  | def _load_ip_adapter_loras(self, state_dicts): | 
					
						
						|  | lora_dicts = {} | 
					
						
						|  | for key_id, name in enumerate(self.attn_processors.keys()): | 
					
						
						|  | for i, state_dict in enumerate(state_dicts): | 
					
						
						|  | if f"{key_id}.to_k_lora.down.weight" in state_dict["ip_adapter"]: | 
					
						
						|  | if i not in lora_dicts: | 
					
						
						|  | lora_dicts[i] = {} | 
					
						
						|  | lora_dicts[i].update( | 
					
						
						|  | { | 
					
						
						|  | f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][ | 
					
						
						|  | f"{key_id}.to_k_lora.down.weight" | 
					
						
						|  | ] | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | lora_dicts[i].update( | 
					
						
						|  | { | 
					
						
						|  | f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][ | 
					
						
						|  | f"{key_id}.to_q_lora.down.weight" | 
					
						
						|  | ] | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | lora_dicts[i].update( | 
					
						
						|  | { | 
					
						
						|  | f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][ | 
					
						
						|  | f"{key_id}.to_v_lora.down.weight" | 
					
						
						|  | ] | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | lora_dicts[i].update( | 
					
						
						|  | { | 
					
						
						|  | f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][ | 
					
						
						|  | f"{key_id}.to_out_lora.down.weight" | 
					
						
						|  | ] | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | lora_dicts[i].update( | 
					
						
						|  | {f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]} | 
					
						
						|  | ) | 
					
						
						|  | lora_dicts[i].update( | 
					
						
						|  | {f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]} | 
					
						
						|  | ) | 
					
						
						|  | lora_dicts[i].update( | 
					
						
						|  | {f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]} | 
					
						
						|  | ) | 
					
						
						|  | lora_dicts[i].update( | 
					
						
						|  | { | 
					
						
						|  | f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][ | 
					
						
						|  | f"{key_id}.to_out_lora.up.weight" | 
					
						
						|  | ] | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return lora_dicts | 
					
						
						|  |  |