|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import importlib | 
					
						
						|  | import inspect | 
					
						
						|  | import os | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from huggingface_hub import snapshot_download | 
					
						
						|  | from huggingface_hub.utils import LocalEntryNotFoundError, validate_hf_hub_args | 
					
						
						|  | from packaging import version | 
					
						
						|  |  | 
					
						
						|  | from ..utils import deprecate, is_transformers_available, logging | 
					
						
						|  | from .single_file_utils import ( | 
					
						
						|  | SingleFileComponentError, | 
					
						
						|  | _is_legacy_scheduler_kwargs, | 
					
						
						|  | _is_model_weights_in_cached_folder, | 
					
						
						|  | _legacy_load_clip_tokenizer, | 
					
						
						|  | _legacy_load_safety_checker, | 
					
						
						|  | _legacy_load_scheduler, | 
					
						
						|  | create_diffusers_clip_model_from_ldm, | 
					
						
						|  | create_diffusers_t5_model_from_checkpoint, | 
					
						
						|  | fetch_diffusers_config, | 
					
						
						|  | fetch_original_config, | 
					
						
						|  | is_clip_model_in_single_file, | 
					
						
						|  | is_t5_in_single_file, | 
					
						
						|  | load_single_file_checkpoint, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | SINGLE_FILE_OPTIONAL_COMPONENTS = ["safety_checker"] | 
					
						
						|  |  | 
					
						
						|  | if is_transformers_available(): | 
					
						
						|  | import transformers | 
					
						
						|  | from transformers import PreTrainedModel, PreTrainedTokenizer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_single_file_sub_model( | 
					
						
						|  | library_name, | 
					
						
						|  | class_name, | 
					
						
						|  | name, | 
					
						
						|  | checkpoint, | 
					
						
						|  | pipelines, | 
					
						
						|  | is_pipeline_module, | 
					
						
						|  | cached_model_config_path, | 
					
						
						|  | original_config=None, | 
					
						
						|  | local_files_only=False, | 
					
						
						|  | torch_dtype=None, | 
					
						
						|  | is_legacy_loading=False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if is_pipeline_module: | 
					
						
						|  | pipeline_module = getattr(pipelines, library_name) | 
					
						
						|  | class_obj = getattr(pipeline_module, class_name) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | library = importlib.import_module(library_name) | 
					
						
						|  | class_obj = getattr(library, class_name) | 
					
						
						|  |  | 
					
						
						|  | if is_transformers_available(): | 
					
						
						|  | transformers_version = version.parse(version.parse(transformers.__version__).base_version) | 
					
						
						|  | else: | 
					
						
						|  | transformers_version = "N/A" | 
					
						
						|  |  | 
					
						
						|  | is_transformers_model = ( | 
					
						
						|  | is_transformers_available() | 
					
						
						|  | and issubclass(class_obj, PreTrainedModel) | 
					
						
						|  | and transformers_version >= version.parse("4.20.0") | 
					
						
						|  | ) | 
					
						
						|  | is_tokenizer = ( | 
					
						
						|  | is_transformers_available() | 
					
						
						|  | and issubclass(class_obj, PreTrainedTokenizer) | 
					
						
						|  | and transformers_version >= version.parse("4.20.0") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | diffusers_module = importlib.import_module(__name__.split(".")[0]) | 
					
						
						|  | is_diffusers_single_file_model = issubclass(class_obj, diffusers_module.FromOriginalModelMixin) | 
					
						
						|  | is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin) | 
					
						
						|  | is_diffusers_scheduler = issubclass(class_obj, diffusers_module.SchedulerMixin) | 
					
						
						|  |  | 
					
						
						|  | if is_diffusers_single_file_model: | 
					
						
						|  | load_method = getattr(class_obj, "from_single_file") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if original_config: | 
					
						
						|  | cached_model_config_path = None | 
					
						
						|  |  | 
					
						
						|  | loaded_sub_model = load_method( | 
					
						
						|  | pretrained_model_link_or_path_or_dict=checkpoint, | 
					
						
						|  | original_config=original_config, | 
					
						
						|  | config=cached_model_config_path, | 
					
						
						|  | subfolder=name, | 
					
						
						|  | torch_dtype=torch_dtype, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif is_transformers_model and is_clip_model_in_single_file(class_obj, checkpoint): | 
					
						
						|  | loaded_sub_model = create_diffusers_clip_model_from_ldm( | 
					
						
						|  | class_obj, | 
					
						
						|  | checkpoint=checkpoint, | 
					
						
						|  | config=cached_model_config_path, | 
					
						
						|  | subfolder=name, | 
					
						
						|  | torch_dtype=torch_dtype, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | is_legacy_loading=is_legacy_loading, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif is_transformers_model and is_t5_in_single_file(checkpoint): | 
					
						
						|  | loaded_sub_model = create_diffusers_t5_model_from_checkpoint( | 
					
						
						|  | class_obj, | 
					
						
						|  | checkpoint=checkpoint, | 
					
						
						|  | config=cached_model_config_path, | 
					
						
						|  | subfolder=name, | 
					
						
						|  | torch_dtype=torch_dtype, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif is_tokenizer and is_legacy_loading: | 
					
						
						|  | loaded_sub_model = _legacy_load_clip_tokenizer( | 
					
						
						|  | class_obj, checkpoint=checkpoint, config=cached_model_config_path, local_files_only=local_files_only | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif is_diffusers_scheduler and (is_legacy_loading or _is_legacy_scheduler_kwargs(kwargs)): | 
					
						
						|  | loaded_sub_model = _legacy_load_scheduler( | 
					
						
						|  | class_obj, checkpoint=checkpoint, component_name=name, original_config=original_config, **kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | if not hasattr(class_obj, "from_pretrained"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | ( | 
					
						
						|  | f"The component {class_obj.__name__} cannot be loaded as it does not seem to have" | 
					
						
						|  | " a supported loading method." | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | loading_kwargs = {} | 
					
						
						|  | loading_kwargs.update( | 
					
						
						|  | { | 
					
						
						|  | "pretrained_model_name_or_path": cached_model_config_path, | 
					
						
						|  | "subfolder": name, | 
					
						
						|  | "local_files_only": local_files_only, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if issubclass(class_obj, torch.nn.Module): | 
					
						
						|  | loading_kwargs.update({"torch_dtype": torch_dtype}) | 
					
						
						|  |  | 
					
						
						|  | if is_diffusers_model or is_transformers_model: | 
					
						
						|  | if not _is_model_weights_in_cached_folder(cached_model_config_path, name): | 
					
						
						|  | raise SingleFileComponentError( | 
					
						
						|  | f"Failed to load {class_name}. Weights for this component appear to be missing in the checkpoint." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | load_method = getattr(class_obj, "from_pretrained") | 
					
						
						|  | loaded_sub_model = load_method(**loading_kwargs) | 
					
						
						|  |  | 
					
						
						|  | return loaded_sub_model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _map_component_types_to_config_dict(component_types): | 
					
						
						|  | diffusers_module = importlib.import_module(__name__.split(".")[0]) | 
					
						
						|  | config_dict = {} | 
					
						
						|  | component_types.pop("self", None) | 
					
						
						|  |  | 
					
						
						|  | if is_transformers_available(): | 
					
						
						|  | transformers_version = version.parse(version.parse(transformers.__version__).base_version) | 
					
						
						|  | else: | 
					
						
						|  | transformers_version = "N/A" | 
					
						
						|  |  | 
					
						
						|  | for component_name, component_value in component_types.items(): | 
					
						
						|  | is_diffusers_model = issubclass(component_value[0], diffusers_module.ModelMixin) | 
					
						
						|  | is_scheduler_enum = component_value[0].__name__ == "KarrasDiffusionSchedulers" | 
					
						
						|  | is_scheduler = issubclass(component_value[0], diffusers_module.SchedulerMixin) | 
					
						
						|  |  | 
					
						
						|  | is_transformers_model = ( | 
					
						
						|  | is_transformers_available() | 
					
						
						|  | and issubclass(component_value[0], PreTrainedModel) | 
					
						
						|  | and transformers_version >= version.parse("4.20.0") | 
					
						
						|  | ) | 
					
						
						|  | is_transformers_tokenizer = ( | 
					
						
						|  | is_transformers_available() | 
					
						
						|  | and issubclass(component_value[0], PreTrainedTokenizer) | 
					
						
						|  | and transformers_version >= version.parse("4.20.0") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if is_diffusers_model and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS: | 
					
						
						|  | config_dict[component_name] = ["diffusers", component_value[0].__name__] | 
					
						
						|  |  | 
					
						
						|  | elif is_scheduler_enum or is_scheduler: | 
					
						
						|  | if is_scheduler_enum: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config_dict[component_name] = ["diffusers", "DDIMScheduler"] | 
					
						
						|  |  | 
					
						
						|  | elif is_scheduler: | 
					
						
						|  | config_dict[component_name] = ["diffusers", component_value[0].__name__] | 
					
						
						|  |  | 
					
						
						|  | elif ( | 
					
						
						|  | is_transformers_model or is_transformers_tokenizer | 
					
						
						|  | ) and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS: | 
					
						
						|  | config_dict[component_name] = ["transformers", component_value[0].__name__] | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | config_dict[component_name] = [None, None] | 
					
						
						|  |  | 
					
						
						|  | return config_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _infer_pipeline_config_dict(pipeline_class): | 
					
						
						|  | parameters = inspect.signature(pipeline_class.__init__).parameters | 
					
						
						|  | required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} | 
					
						
						|  | component_types = pipeline_class._get_signature_types() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | component_types = {k: v for k, v in component_types.items() if k in required_parameters} | 
					
						
						|  | config_dict = _map_component_types_to_config_dict(component_types) | 
					
						
						|  |  | 
					
						
						|  | return config_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _download_diffusers_model_config_from_hub( | 
					
						
						|  | pretrained_model_name_or_path, | 
					
						
						|  | cache_dir, | 
					
						
						|  | revision, | 
					
						
						|  | proxies, | 
					
						
						|  | force_download=None, | 
					
						
						|  | local_files_only=None, | 
					
						
						|  | token=None, | 
					
						
						|  | ): | 
					
						
						|  | allow_patterns = ["**/*.json", "*.json", "*.txt", "**/*.txt", "**/*.model"] | 
					
						
						|  | cached_model_path = snapshot_download( | 
					
						
						|  | pretrained_model_name_or_path, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | revision=revision, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | token=token, | 
					
						
						|  | allow_patterns=allow_patterns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return cached_model_path | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FromSingleFileMixin: | 
					
						
						|  | """ | 
					
						
						|  | Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  | def from_single_file(cls, pretrained_model_link_or_path, **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors` | 
					
						
						|  | format. The pipeline is set in evaluation mode (`model.eval()`) by default. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): | 
					
						
						|  | Can be either: | 
					
						
						|  | - A link to the `.ckpt` file (for example | 
					
						
						|  | `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. | 
					
						
						|  | - A path to a *file* containing all pipeline weights. | 
					
						
						|  | torch_dtype (`str` or `torch.dtype`, *optional*): | 
					
						
						|  | Override the default `torch.dtype` and load the model with another dtype. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | original_config_file (`str`, *optional*): | 
					
						
						|  | The path to the original config file that was used to train the model. If not provided, the config file | 
					
						
						|  | will be inferred from the checkpoint file. | 
					
						
						|  | config (`str`, *optional*): | 
					
						
						|  | Can be either: | 
					
						
						|  | - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline | 
					
						
						|  | hosted on the Hub. | 
					
						
						|  | - A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline | 
					
						
						|  | component configs in Diffusers format. | 
					
						
						|  | kwargs (remaining dictionary of keyword arguments, *optional*): | 
					
						
						|  | Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline | 
					
						
						|  | class). The overwritten components are passed directly to the pipelines `__init__` method. See example | 
					
						
						|  | below for more information. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | >>> from diffusers import StableDiffusionPipeline | 
					
						
						|  |  | 
					
						
						|  | >>> # Download pipeline from huggingface.co and cache. | 
					
						
						|  | >>> pipeline = StableDiffusionPipeline.from_single_file( | 
					
						
						|  | ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors" | 
					
						
						|  | ... ) | 
					
						
						|  |  | 
					
						
						|  | >>> # Download pipeline from local file | 
					
						
						|  | >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt | 
					
						
						|  | >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly.ckpt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Enable float16 and move to GPU | 
					
						
						|  | >>> pipeline = StableDiffusionPipeline.from_single_file( | 
					
						
						|  | ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", | 
					
						
						|  | ...     torch_dtype=torch.float16, | 
					
						
						|  | ... ) | 
					
						
						|  | >>> pipeline.to("cuda") | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | original_config_file = kwargs.pop("original_config_file", None) | 
					
						
						|  | config = kwargs.pop("config", None) | 
					
						
						|  | original_config = kwargs.pop("original_config", None) | 
					
						
						|  |  | 
					
						
						|  | if original_config_file is not None: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | "`original_config_file` argument is deprecated and will be removed in future versions." | 
					
						
						|  | "please use the `original_config` argument instead." | 
					
						
						|  | ) | 
					
						
						|  | deprecate("original_config_file", "1.0.0", deprecation_message) | 
					
						
						|  | original_config = original_config_file | 
					
						
						|  |  | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", False) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | torch_dtype = kwargs.pop("torch_dtype", None) | 
					
						
						|  |  | 
					
						
						|  | is_legacy_loading = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scaling_factor = kwargs.get("scaling_factor", None) | 
					
						
						|  | if scaling_factor is not None: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | "Passing the `scaling_factor` argument to `from_single_file is deprecated " | 
					
						
						|  | "and will be ignored in future versions." | 
					
						
						|  | ) | 
					
						
						|  | deprecate("scaling_factor", "1.0.0", deprecation_message) | 
					
						
						|  |  | 
					
						
						|  | if original_config is not None: | 
					
						
						|  | original_config = fetch_original_config(original_config, local_files_only=local_files_only) | 
					
						
						|  |  | 
					
						
						|  | from ..pipelines.pipeline_utils import _get_pipeline_class | 
					
						
						|  |  | 
					
						
						|  | pipeline_class = _get_pipeline_class(cls, config=None) | 
					
						
						|  |  | 
					
						
						|  | checkpoint = load_single_file_checkpoint( | 
					
						
						|  | pretrained_model_link_or_path, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | token=token, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | revision=revision, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if config is None: | 
					
						
						|  | config = fetch_diffusers_config(checkpoint) | 
					
						
						|  | default_pretrained_model_config_name = config["pretrained_model_name_or_path"] | 
					
						
						|  | else: | 
					
						
						|  | default_pretrained_model_config_name = config | 
					
						
						|  |  | 
					
						
						|  | if not os.path.isdir(default_pretrained_model_config_name): | 
					
						
						|  |  | 
					
						
						|  | if default_pretrained_model_config_name.count("/") > 1: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f'The provided config "{config}"' | 
					
						
						|  | " is neither a valid local path nor a valid repo id. Please check the parameter." | 
					
						
						|  | ) | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | cached_model_config_path = _download_diffusers_model_config_from_hub( | 
					
						
						|  | default_pretrained_model_config_name, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | revision=revision, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | token=token, | 
					
						
						|  | ) | 
					
						
						|  | config_dict = pipeline_class.load_config(cached_model_config_path) | 
					
						
						|  |  | 
					
						
						|  | except LocalEntryNotFoundError: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if original_config is None: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "`local_files_only` is True but no local configs were found for this checkpoint.\n" | 
					
						
						|  | "Attempting to download the necessary config files for this pipeline.\n" | 
					
						
						|  | ) | 
					
						
						|  | cached_model_config_path = _download_diffusers_model_config_from_hub( | 
					
						
						|  | default_pretrained_model_config_name, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | revision=revision, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | local_files_only=False, | 
					
						
						|  | token=token, | 
					
						
						|  | ) | 
					
						
						|  | config_dict = pipeline_class.load_config(cached_model_config_path) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.warning( | 
					
						
						|  | "Detected legacy `from_single_file` loading behavior. Attempting to create the pipeline based on inferred components.\n" | 
					
						
						|  | "This may lead to errors if the model components are not correctly inferred. \n" | 
					
						
						|  | "To avoid this warning, please explicity pass the `config` argument to `from_single_file` with a path to a local diffusers model repo \n" | 
					
						
						|  | "e.g. `from_single_file(<my model checkpoint path>, config=<path to local diffusers model repo>) \n" | 
					
						
						|  | "or run `from_single_file` with `local_files_only=False` first to update the local cache directory with " | 
					
						
						|  | "the necessary config files.\n" | 
					
						
						|  | ) | 
					
						
						|  | is_legacy_loading = True | 
					
						
						|  | cached_model_config_path = None | 
					
						
						|  |  | 
					
						
						|  | config_dict = _infer_pipeline_config_dict(pipeline_class) | 
					
						
						|  | config_dict["_class_name"] = pipeline_class.__name__ | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | cached_model_config_path = default_pretrained_model_config_name | 
					
						
						|  | config_dict = pipeline_class.load_config(cached_model_config_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config_dict.pop("_ignore_files", None) | 
					
						
						|  |  | 
					
						
						|  | expected_modules, optional_kwargs = pipeline_class._get_signature_keys(cls) | 
					
						
						|  | passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | 
					
						
						|  | passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | 
					
						
						|  |  | 
					
						
						|  | init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs) | 
					
						
						|  | init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict} | 
					
						
						|  | init_kwargs = {**init_kwargs, **passed_pipe_kwargs} | 
					
						
						|  |  | 
					
						
						|  | from diffusers import pipelines | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_module(name, value): | 
					
						
						|  | if value[0] is None: | 
					
						
						|  | return False | 
					
						
						|  | if name in passed_class_obj and passed_class_obj[name] is None: | 
					
						
						|  | return False | 
					
						
						|  | if name in SINGLE_FILE_OPTIONAL_COMPONENTS: | 
					
						
						|  | return False | 
					
						
						|  |  | 
					
						
						|  | return True | 
					
						
						|  |  | 
					
						
						|  | init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)} | 
					
						
						|  |  | 
					
						
						|  | for name, (library_name, class_name) in logging.tqdm( | 
					
						
						|  | sorted(init_dict.items()), desc="Loading pipeline components..." | 
					
						
						|  | ): | 
					
						
						|  | loaded_sub_model = None | 
					
						
						|  | is_pipeline_module = hasattr(pipelines, library_name) | 
					
						
						|  |  | 
					
						
						|  | if name in passed_class_obj: | 
					
						
						|  | loaded_sub_model = passed_class_obj[name] | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | try: | 
					
						
						|  | loaded_sub_model = load_single_file_sub_model( | 
					
						
						|  | library_name=library_name, | 
					
						
						|  | class_name=class_name, | 
					
						
						|  | name=name, | 
					
						
						|  | checkpoint=checkpoint, | 
					
						
						|  | is_pipeline_module=is_pipeline_module, | 
					
						
						|  | cached_model_config_path=cached_model_config_path, | 
					
						
						|  | pipelines=pipelines, | 
					
						
						|  | torch_dtype=torch_dtype, | 
					
						
						|  | original_config=original_config, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | is_legacy_loading=is_legacy_loading, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | except SingleFileComponentError as e: | 
					
						
						|  | raise SingleFileComponentError( | 
					
						
						|  | ( | 
					
						
						|  | f"{e.message}\n" | 
					
						
						|  | f"Please load the component before passing it in as an argument to `from_single_file`.\n" | 
					
						
						|  | f"\n" | 
					
						
						|  | f"{name} = {class_name}.from_pretrained('...')\n" | 
					
						
						|  | f"pipe = {pipeline_class.__name__}.from_single_file(<checkpoint path>, {name}={name})\n" | 
					
						
						|  | f"\n" | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | init_kwargs[name] = loaded_sub_model | 
					
						
						|  |  | 
					
						
						|  | missing_modules = set(expected_modules) - set(init_kwargs.keys()) | 
					
						
						|  | passed_modules = list(passed_class_obj.keys()) | 
					
						
						|  | optional_modules = pipeline_class._optional_components | 
					
						
						|  |  | 
					
						
						|  | if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules): | 
					
						
						|  | for module in missing_modules: | 
					
						
						|  | init_kwargs[module] = passed_class_obj.get(module, None) | 
					
						
						|  | elif len(missing_modules) > 0: | 
					
						
						|  | passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | load_safety_checker = kwargs.pop("load_safety_checker", None) | 
					
						
						|  | if load_safety_checker is not None: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | "Please pass instances of `StableDiffusionSafetyChecker` and `AutoImageProcessor`" | 
					
						
						|  | "using the `safety_checker` and `feature_extractor` arguments in `from_single_file`" | 
					
						
						|  | ) | 
					
						
						|  | deprecate("load_safety_checker", "1.0.0", deprecation_message) | 
					
						
						|  |  | 
					
						
						|  | safety_checker_components = _legacy_load_safety_checker(local_files_only, torch_dtype) | 
					
						
						|  | init_kwargs.update(safety_checker_components) | 
					
						
						|  |  | 
					
						
						|  | pipe = pipeline_class(**init_kwargs) | 
					
						
						|  |  | 
					
						
						|  | return pipe | 
					
						
						|  |  |