|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import flax | 
					
						
						|  | import jax | 
					
						
						|  | import jax.numpy as jnp | 
					
						
						|  |  | 
					
						
						|  | from ..configuration_utils import ConfigMixin, register_to_config | 
					
						
						|  | from .scheduling_utils_flax import ( | 
					
						
						|  | CommonSchedulerState, | 
					
						
						|  | FlaxKarrasDiffusionSchedulers, | 
					
						
						|  | FlaxSchedulerMixin, | 
					
						
						|  | FlaxSchedulerOutput, | 
					
						
						|  | add_noise_common, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @flax.struct.dataclass | 
					
						
						|  | class DPMSolverMultistepSchedulerState: | 
					
						
						|  | common: CommonSchedulerState | 
					
						
						|  | alpha_t: jnp.ndarray | 
					
						
						|  | sigma_t: jnp.ndarray | 
					
						
						|  | lambda_t: jnp.ndarray | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | init_noise_sigma: jnp.ndarray | 
					
						
						|  | timesteps: jnp.ndarray | 
					
						
						|  | num_inference_steps: Optional[int] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_outputs: Optional[jnp.ndarray] = None | 
					
						
						|  | lower_order_nums: Optional[jnp.int32] = None | 
					
						
						|  | prev_timestep: Optional[jnp.int32] = None | 
					
						
						|  | cur_sample: Optional[jnp.ndarray] = None | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def create( | 
					
						
						|  | cls, | 
					
						
						|  | common: CommonSchedulerState, | 
					
						
						|  | alpha_t: jnp.ndarray, | 
					
						
						|  | sigma_t: jnp.ndarray, | 
					
						
						|  | lambda_t: jnp.ndarray, | 
					
						
						|  | init_noise_sigma: jnp.ndarray, | 
					
						
						|  | timesteps: jnp.ndarray, | 
					
						
						|  | ): | 
					
						
						|  | return cls( | 
					
						
						|  | common=common, | 
					
						
						|  | alpha_t=alpha_t, | 
					
						
						|  | sigma_t=sigma_t, | 
					
						
						|  | lambda_t=lambda_t, | 
					
						
						|  | init_noise_sigma=init_noise_sigma, | 
					
						
						|  | timesteps=timesteps, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class FlaxDPMSolverMultistepSchedulerOutput(FlaxSchedulerOutput): | 
					
						
						|  | state: DPMSolverMultistepSchedulerState | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin): | 
					
						
						|  | """ | 
					
						
						|  | DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with | 
					
						
						|  | the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality | 
					
						
						|  | samples, and it can generate quite good samples even in only 10 steps. | 
					
						
						|  |  | 
					
						
						|  | For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095 | 
					
						
						|  |  | 
					
						
						|  | Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We | 
					
						
						|  | recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. | 
					
						
						|  |  | 
					
						
						|  | We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space | 
					
						
						|  | diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic | 
					
						
						|  | thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as | 
					
						
						|  | stable-diffusion). | 
					
						
						|  |  | 
					
						
						|  | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | 
					
						
						|  | function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | 
					
						
						|  | [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | 
					
						
						|  | [`~SchedulerMixin.from_pretrained`] functions. | 
					
						
						|  |  | 
					
						
						|  | For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095 | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | num_train_timesteps (`int`): number of diffusion steps used to train the model. | 
					
						
						|  | beta_start (`float`): the starting `beta` value of inference. | 
					
						
						|  | beta_end (`float`): the final `beta` value. | 
					
						
						|  | beta_schedule (`str`): | 
					
						
						|  | the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | 
					
						
						|  | `linear`, `scaled_linear`, or `squaredcos_cap_v2`. | 
					
						
						|  | trained_betas (`np.ndarray`, optional): | 
					
						
						|  | option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | 
					
						
						|  | solver_order (`int`, default `2`): | 
					
						
						|  | the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided | 
					
						
						|  | sampling, and `solver_order=3` for unconditional sampling. | 
					
						
						|  | prediction_type (`str`, default `epsilon`): | 
					
						
						|  | indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`, | 
					
						
						|  | or `v-prediction`. | 
					
						
						|  | thresholding (`bool`, default `False`): | 
					
						
						|  | whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). | 
					
						
						|  | For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to | 
					
						
						|  | use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion | 
					
						
						|  | models (such as stable-diffusion). | 
					
						
						|  | dynamic_thresholding_ratio (`float`, default `0.995`): | 
					
						
						|  | the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen | 
					
						
						|  | (https://arxiv.org/abs/2205.11487). | 
					
						
						|  | sample_max_value (`float`, default `1.0`): | 
					
						
						|  | the threshold value for dynamic thresholding. Valid only when `thresholding=True` and | 
					
						
						|  | `algorithm_type="dpmsolver++`. | 
					
						
						|  | algorithm_type (`str`, default `dpmsolver++`): | 
					
						
						|  | the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the | 
					
						
						|  | algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in | 
					
						
						|  | https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided | 
					
						
						|  | sampling (e.g. stable-diffusion). | 
					
						
						|  | solver_type (`str`, default `midpoint`): | 
					
						
						|  | the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects | 
					
						
						|  | the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are | 
					
						
						|  | slightly better, so we recommend to use the `midpoint` type. | 
					
						
						|  | lower_order_final (`bool`, default `True`): | 
					
						
						|  | whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically | 
					
						
						|  | find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. | 
					
						
						|  | timestep_spacing (`str`, defaults to `"linspace"`): | 
					
						
						|  | The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | 
					
						
						|  | Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | 
					
						
						|  | dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): | 
					
						
						|  | the `dtype` used for params and computation. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] | 
					
						
						|  |  | 
					
						
						|  | dtype: jnp.dtype | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def has_state(self): | 
					
						
						|  | return True | 
					
						
						|  |  | 
					
						
						|  | @register_to_config | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | num_train_timesteps: int = 1000, | 
					
						
						|  | beta_start: float = 0.0001, | 
					
						
						|  | beta_end: float = 0.02, | 
					
						
						|  | beta_schedule: str = "linear", | 
					
						
						|  | trained_betas: Optional[jnp.ndarray] = None, | 
					
						
						|  | solver_order: int = 2, | 
					
						
						|  | prediction_type: str = "epsilon", | 
					
						
						|  | thresholding: bool = False, | 
					
						
						|  | dynamic_thresholding_ratio: float = 0.995, | 
					
						
						|  | sample_max_value: float = 1.0, | 
					
						
						|  | algorithm_type: str = "dpmsolver++", | 
					
						
						|  | solver_type: str = "midpoint", | 
					
						
						|  | lower_order_final: bool = True, | 
					
						
						|  | timestep_spacing: str = "linspace", | 
					
						
						|  | dtype: jnp.dtype = jnp.float32, | 
					
						
						|  | ): | 
					
						
						|  | self.dtype = dtype | 
					
						
						|  |  | 
					
						
						|  | def create_state(self, common: Optional[CommonSchedulerState] = None) -> DPMSolverMultistepSchedulerState: | 
					
						
						|  | if common is None: | 
					
						
						|  | common = CommonSchedulerState.create(self) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | alpha_t = jnp.sqrt(common.alphas_cumprod) | 
					
						
						|  | sigma_t = jnp.sqrt(1 - common.alphas_cumprod) | 
					
						
						|  | lambda_t = jnp.log(alpha_t) - jnp.log(sigma_t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config.algorithm_type not in ["dpmsolver", "dpmsolver++"]: | 
					
						
						|  | raise NotImplementedError(f"{self.config.algorithm_type} is not implemented for {self.__class__}") | 
					
						
						|  | if self.config.solver_type not in ["midpoint", "heun"]: | 
					
						
						|  | raise NotImplementedError(f"{self.config.solver_type} is not implemented for {self.__class__}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | init_noise_sigma = jnp.array(1.0, dtype=self.dtype) | 
					
						
						|  |  | 
					
						
						|  | timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] | 
					
						
						|  |  | 
					
						
						|  | return DPMSolverMultistepSchedulerState.create( | 
					
						
						|  | common=common, | 
					
						
						|  | alpha_t=alpha_t, | 
					
						
						|  | sigma_t=sigma_t, | 
					
						
						|  | lambda_t=lambda_t, | 
					
						
						|  | init_noise_sigma=init_noise_sigma, | 
					
						
						|  | timesteps=timesteps, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def set_timesteps( | 
					
						
						|  | self, state: DPMSolverMultistepSchedulerState, num_inference_steps: int, shape: Tuple | 
					
						
						|  | ) -> DPMSolverMultistepSchedulerState: | 
					
						
						|  | """ | 
					
						
						|  | Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | state (`DPMSolverMultistepSchedulerState`): | 
					
						
						|  | the `FlaxDPMSolverMultistepScheduler` state data class instance. | 
					
						
						|  | num_inference_steps (`int`): | 
					
						
						|  | the number of diffusion steps used when generating samples with a pre-trained model. | 
					
						
						|  | shape (`Tuple`): | 
					
						
						|  | the shape of the samples to be generated. | 
					
						
						|  | """ | 
					
						
						|  | last_timestep = self.config.num_train_timesteps | 
					
						
						|  | if self.config.timestep_spacing == "linspace": | 
					
						
						|  | timesteps = ( | 
					
						
						|  | jnp.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].astype(jnp.int32) | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.timestep_spacing == "leading": | 
					
						
						|  | step_ratio = last_timestep // (num_inference_steps + 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timesteps = ( | 
					
						
						|  | (jnp.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(jnp.int32) | 
					
						
						|  | ) | 
					
						
						|  | timesteps += self.config.steps_offset | 
					
						
						|  | elif self.config.timestep_spacing == "trailing": | 
					
						
						|  | step_ratio = self.config.num_train_timesteps / num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timesteps = jnp.arange(last_timestep, 0, -step_ratio).round().copy().astype(jnp.int32) | 
					
						
						|  | timesteps -= 1 | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_outputs = jnp.zeros((self.config.solver_order,) + shape, dtype=self.dtype) | 
					
						
						|  | lower_order_nums = jnp.int32(0) | 
					
						
						|  | prev_timestep = jnp.int32(-1) | 
					
						
						|  | cur_sample = jnp.zeros(shape, dtype=self.dtype) | 
					
						
						|  |  | 
					
						
						|  | return state.replace( | 
					
						
						|  | num_inference_steps=num_inference_steps, | 
					
						
						|  | timesteps=timesteps, | 
					
						
						|  | model_outputs=model_outputs, | 
					
						
						|  | lower_order_nums=lower_order_nums, | 
					
						
						|  | prev_timestep=prev_timestep, | 
					
						
						|  | cur_sample=cur_sample, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def convert_model_output( | 
					
						
						|  | self, | 
					
						
						|  | state: DPMSolverMultistepSchedulerState, | 
					
						
						|  | model_output: jnp.ndarray, | 
					
						
						|  | timestep: int, | 
					
						
						|  | sample: jnp.ndarray, | 
					
						
						|  | ) -> jnp.ndarray: | 
					
						
						|  | """ | 
					
						
						|  | Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs. | 
					
						
						|  |  | 
					
						
						|  | DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to | 
					
						
						|  | discretize an integral of the data prediction model. So we need to first convert the model output to the | 
					
						
						|  | corresponding type to match the algorithm. | 
					
						
						|  |  | 
					
						
						|  | Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or | 
					
						
						|  | DPM-Solver++ for both noise prediction model and data prediction model. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | model_output (`jnp.ndarray`): direct output from learned diffusion model. | 
					
						
						|  | timestep (`int`): current discrete timestep in the diffusion chain. | 
					
						
						|  | sample (`jnp.ndarray`): | 
					
						
						|  | current instance of sample being created by diffusion process. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `jnp.ndarray`: the converted model output. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if self.config.algorithm_type == "dpmsolver++": | 
					
						
						|  | if self.config.prediction_type == "epsilon": | 
					
						
						|  | alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep] | 
					
						
						|  | x0_pred = (sample - sigma_t * model_output) / alpha_t | 
					
						
						|  | elif self.config.prediction_type == "sample": | 
					
						
						|  | x0_pred = model_output | 
					
						
						|  | elif self.config.prediction_type == "v_prediction": | 
					
						
						|  | alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep] | 
					
						
						|  | x0_pred = alpha_t * sample - sigma_t * model_output | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, " | 
					
						
						|  | " or `v_prediction` for the FlaxDPMSolverMultistepScheduler." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.config.thresholding: | 
					
						
						|  |  | 
					
						
						|  | dynamic_max_val = jnp.percentile( | 
					
						
						|  | jnp.abs(x0_pred), self.config.dynamic_thresholding_ratio, axis=tuple(range(1, x0_pred.ndim)) | 
					
						
						|  | ) | 
					
						
						|  | dynamic_max_val = jnp.maximum( | 
					
						
						|  | dynamic_max_val, self.config.sample_max_value * jnp.ones_like(dynamic_max_val) | 
					
						
						|  | ) | 
					
						
						|  | x0_pred = jnp.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val | 
					
						
						|  | return x0_pred | 
					
						
						|  |  | 
					
						
						|  | elif self.config.algorithm_type == "dpmsolver": | 
					
						
						|  | if self.config.prediction_type == "epsilon": | 
					
						
						|  | return model_output | 
					
						
						|  | elif self.config.prediction_type == "sample": | 
					
						
						|  | alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep] | 
					
						
						|  | epsilon = (sample - alpha_t * model_output) / sigma_t | 
					
						
						|  | return epsilon | 
					
						
						|  | elif self.config.prediction_type == "v_prediction": | 
					
						
						|  | alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep] | 
					
						
						|  | epsilon = alpha_t * model_output + sigma_t * sample | 
					
						
						|  | return epsilon | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, " | 
					
						
						|  | " or `v_prediction` for the FlaxDPMSolverMultistepScheduler." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def dpm_solver_first_order_update( | 
					
						
						|  | self, | 
					
						
						|  | state: DPMSolverMultistepSchedulerState, | 
					
						
						|  | model_output: jnp.ndarray, | 
					
						
						|  | timestep: int, | 
					
						
						|  | prev_timestep: int, | 
					
						
						|  | sample: jnp.ndarray, | 
					
						
						|  | ) -> jnp.ndarray: | 
					
						
						|  | """ | 
					
						
						|  | One step for the first-order DPM-Solver (equivalent to DDIM). | 
					
						
						|  |  | 
					
						
						|  | See https://arxiv.org/abs/2206.00927 for the detailed derivation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | model_output (`jnp.ndarray`): direct output from learned diffusion model. | 
					
						
						|  | timestep (`int`): current discrete timestep in the diffusion chain. | 
					
						
						|  | prev_timestep (`int`): previous discrete timestep in the diffusion chain. | 
					
						
						|  | sample (`jnp.ndarray`): | 
					
						
						|  | current instance of sample being created by diffusion process. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `jnp.ndarray`: the sample tensor at the previous timestep. | 
					
						
						|  | """ | 
					
						
						|  | t, s0 = prev_timestep, timestep | 
					
						
						|  | m0 = model_output | 
					
						
						|  | lambda_t, lambda_s = state.lambda_t[t], state.lambda_t[s0] | 
					
						
						|  | alpha_t, alpha_s = state.alpha_t[t], state.alpha_t[s0] | 
					
						
						|  | sigma_t, sigma_s = state.sigma_t[t], state.sigma_t[s0] | 
					
						
						|  | h = lambda_t - lambda_s | 
					
						
						|  | if self.config.algorithm_type == "dpmsolver++": | 
					
						
						|  | x_t = (sigma_t / sigma_s) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * m0 | 
					
						
						|  | elif self.config.algorithm_type == "dpmsolver": | 
					
						
						|  | x_t = (alpha_t / alpha_s) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * m0 | 
					
						
						|  | return x_t | 
					
						
						|  |  | 
					
						
						|  | def multistep_dpm_solver_second_order_update( | 
					
						
						|  | self, | 
					
						
						|  | state: DPMSolverMultistepSchedulerState, | 
					
						
						|  | model_output_list: jnp.ndarray, | 
					
						
						|  | timestep_list: List[int], | 
					
						
						|  | prev_timestep: int, | 
					
						
						|  | sample: jnp.ndarray, | 
					
						
						|  | ) -> jnp.ndarray: | 
					
						
						|  | """ | 
					
						
						|  | One step for the second-order multistep DPM-Solver. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | model_output_list (`List[jnp.ndarray]`): | 
					
						
						|  | direct outputs from learned diffusion model at current and latter timesteps. | 
					
						
						|  | timestep (`int`): current and latter discrete timestep in the diffusion chain. | 
					
						
						|  | prev_timestep (`int`): previous discrete timestep in the diffusion chain. | 
					
						
						|  | sample (`jnp.ndarray`): | 
					
						
						|  | current instance of sample being created by diffusion process. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `jnp.ndarray`: the sample tensor at the previous timestep. | 
					
						
						|  | """ | 
					
						
						|  | t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] | 
					
						
						|  | m0, m1 = model_output_list[-1], model_output_list[-2] | 
					
						
						|  | lambda_t, lambda_s0, lambda_s1 = state.lambda_t[t], state.lambda_t[s0], state.lambda_t[s1] | 
					
						
						|  | alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0] | 
					
						
						|  | sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0] | 
					
						
						|  | h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 | 
					
						
						|  | r0 = h_0 / h | 
					
						
						|  | D0, D1 = m0, (1.0 / r0) * (m0 - m1) | 
					
						
						|  | if self.config.algorithm_type == "dpmsolver++": | 
					
						
						|  |  | 
					
						
						|  | if self.config.solver_type == "midpoint": | 
					
						
						|  | x_t = ( | 
					
						
						|  | (sigma_t / sigma_s0) * sample | 
					
						
						|  | - (alpha_t * (jnp.exp(-h) - 1.0)) * D0 | 
					
						
						|  | - 0.5 * (alpha_t * (jnp.exp(-h) - 1.0)) * D1 | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.solver_type == "heun": | 
					
						
						|  | x_t = ( | 
					
						
						|  | (sigma_t / sigma_s0) * sample | 
					
						
						|  | - (alpha_t * (jnp.exp(-h) - 1.0)) * D0 | 
					
						
						|  | + (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1 | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.algorithm_type == "dpmsolver": | 
					
						
						|  |  | 
					
						
						|  | if self.config.solver_type == "midpoint": | 
					
						
						|  | x_t = ( | 
					
						
						|  | (alpha_t / alpha_s0) * sample | 
					
						
						|  | - (sigma_t * (jnp.exp(h) - 1.0)) * D0 | 
					
						
						|  | - 0.5 * (sigma_t * (jnp.exp(h) - 1.0)) * D1 | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.solver_type == "heun": | 
					
						
						|  | x_t = ( | 
					
						
						|  | (alpha_t / alpha_s0) * sample | 
					
						
						|  | - (sigma_t * (jnp.exp(h) - 1.0)) * D0 | 
					
						
						|  | - (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1 | 
					
						
						|  | ) | 
					
						
						|  | return x_t | 
					
						
						|  |  | 
					
						
						|  | def multistep_dpm_solver_third_order_update( | 
					
						
						|  | self, | 
					
						
						|  | state: DPMSolverMultistepSchedulerState, | 
					
						
						|  | model_output_list: jnp.ndarray, | 
					
						
						|  | timestep_list: List[int], | 
					
						
						|  | prev_timestep: int, | 
					
						
						|  | sample: jnp.ndarray, | 
					
						
						|  | ) -> jnp.ndarray: | 
					
						
						|  | """ | 
					
						
						|  | One step for the third-order multistep DPM-Solver. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | model_output_list (`List[jnp.ndarray]`): | 
					
						
						|  | direct outputs from learned diffusion model at current and latter timesteps. | 
					
						
						|  | timestep (`int`): current and latter discrete timestep in the diffusion chain. | 
					
						
						|  | prev_timestep (`int`): previous discrete timestep in the diffusion chain. | 
					
						
						|  | sample (`jnp.ndarray`): | 
					
						
						|  | current instance of sample being created by diffusion process. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `jnp.ndarray`: the sample tensor at the previous timestep. | 
					
						
						|  | """ | 
					
						
						|  | t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] | 
					
						
						|  | m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] | 
					
						
						|  | lambda_t, lambda_s0, lambda_s1, lambda_s2 = ( | 
					
						
						|  | state.lambda_t[t], | 
					
						
						|  | state.lambda_t[s0], | 
					
						
						|  | state.lambda_t[s1], | 
					
						
						|  | state.lambda_t[s2], | 
					
						
						|  | ) | 
					
						
						|  | alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0] | 
					
						
						|  | sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0] | 
					
						
						|  | h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 | 
					
						
						|  | r0, r1 = h_0 / h, h_1 / h | 
					
						
						|  | D0 = m0 | 
					
						
						|  | D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) | 
					
						
						|  | D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) | 
					
						
						|  | D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) | 
					
						
						|  | if self.config.algorithm_type == "dpmsolver++": | 
					
						
						|  |  | 
					
						
						|  | x_t = ( | 
					
						
						|  | (sigma_t / sigma_s0) * sample | 
					
						
						|  | - (alpha_t * (jnp.exp(-h) - 1.0)) * D0 | 
					
						
						|  | + (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1 | 
					
						
						|  | - (alpha_t * ((jnp.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.algorithm_type == "dpmsolver": | 
					
						
						|  |  | 
					
						
						|  | x_t = ( | 
					
						
						|  | (alpha_t / alpha_s0) * sample | 
					
						
						|  | - (sigma_t * (jnp.exp(h) - 1.0)) * D0 | 
					
						
						|  | - (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1 | 
					
						
						|  | - (sigma_t * ((jnp.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 | 
					
						
						|  | ) | 
					
						
						|  | return x_t | 
					
						
						|  |  | 
					
						
						|  | def step( | 
					
						
						|  | self, | 
					
						
						|  | state: DPMSolverMultistepSchedulerState, | 
					
						
						|  | model_output: jnp.ndarray, | 
					
						
						|  | timestep: int, | 
					
						
						|  | sample: jnp.ndarray, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[FlaxDPMSolverMultistepSchedulerOutput, Tuple]: | 
					
						
						|  | """ | 
					
						
						|  | Predict the sample at the previous timestep by DPM-Solver. Core function to propagate the diffusion process | 
					
						
						|  | from the learned model outputs (most often the predicted noise). | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | state (`DPMSolverMultistepSchedulerState`): | 
					
						
						|  | the `FlaxDPMSolverMultistepScheduler` state data class instance. | 
					
						
						|  | model_output (`jnp.ndarray`): direct output from learned diffusion model. | 
					
						
						|  | timestep (`int`): current discrete timestep in the diffusion chain. | 
					
						
						|  | sample (`jnp.ndarray`): | 
					
						
						|  | current instance of sample being created by diffusion process. | 
					
						
						|  | return_dict (`bool`): option for returning tuple rather than FlaxDPMSolverMultistepSchedulerOutput class | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`FlaxDPMSolverMultistepSchedulerOutput`] or `tuple`: [`FlaxDPMSolverMultistepSchedulerOutput`] if | 
					
						
						|  | `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | if state.num_inference_steps is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | (step_index,) = jnp.where(state.timesteps == timestep, size=1) | 
					
						
						|  | step_index = step_index[0] | 
					
						
						|  |  | 
					
						
						|  | prev_timestep = jax.lax.select(step_index == len(state.timesteps) - 1, 0, state.timesteps[step_index + 1]) | 
					
						
						|  |  | 
					
						
						|  | model_output = self.convert_model_output(state, model_output, timestep, sample) | 
					
						
						|  |  | 
					
						
						|  | model_outputs_new = jnp.roll(state.model_outputs, -1, axis=0) | 
					
						
						|  | model_outputs_new = model_outputs_new.at[-1].set(model_output) | 
					
						
						|  | state = state.replace( | 
					
						
						|  | model_outputs=model_outputs_new, | 
					
						
						|  | prev_timestep=prev_timestep, | 
					
						
						|  | cur_sample=sample, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def step_1(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | 
					
						
						|  | return self.dpm_solver_first_order_update( | 
					
						
						|  | state, | 
					
						
						|  | state.model_outputs[-1], | 
					
						
						|  | state.timesteps[step_index], | 
					
						
						|  | state.prev_timestep, | 
					
						
						|  | state.cur_sample, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def step_23(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | 
					
						
						|  | def step_2(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | 
					
						
						|  | timestep_list = jnp.array([state.timesteps[step_index - 1], state.timesteps[step_index]]) | 
					
						
						|  | return self.multistep_dpm_solver_second_order_update( | 
					
						
						|  | state, | 
					
						
						|  | state.model_outputs, | 
					
						
						|  | timestep_list, | 
					
						
						|  | state.prev_timestep, | 
					
						
						|  | state.cur_sample, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def step_3(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | 
					
						
						|  | timestep_list = jnp.array( | 
					
						
						|  | [ | 
					
						
						|  | state.timesteps[step_index - 2], | 
					
						
						|  | state.timesteps[step_index - 1], | 
					
						
						|  | state.timesteps[step_index], | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | return self.multistep_dpm_solver_third_order_update( | 
					
						
						|  | state, | 
					
						
						|  | state.model_outputs, | 
					
						
						|  | timestep_list, | 
					
						
						|  | state.prev_timestep, | 
					
						
						|  | state.cur_sample, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | step_2_output = step_2(state) | 
					
						
						|  | step_3_output = step_3(state) | 
					
						
						|  |  | 
					
						
						|  | if self.config.solver_order == 2: | 
					
						
						|  | return step_2_output | 
					
						
						|  | elif self.config.lower_order_final and len(state.timesteps) < 15: | 
					
						
						|  | return jax.lax.select( | 
					
						
						|  | state.lower_order_nums < 2, | 
					
						
						|  | step_2_output, | 
					
						
						|  | jax.lax.select( | 
					
						
						|  | step_index == len(state.timesteps) - 2, | 
					
						
						|  | step_2_output, | 
					
						
						|  | step_3_output, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | return jax.lax.select( | 
					
						
						|  | state.lower_order_nums < 2, | 
					
						
						|  | step_2_output, | 
					
						
						|  | step_3_output, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | step_1_output = step_1(state) | 
					
						
						|  | step_23_output = step_23(state) | 
					
						
						|  |  | 
					
						
						|  | if self.config.solver_order == 1: | 
					
						
						|  | prev_sample = step_1_output | 
					
						
						|  |  | 
					
						
						|  | elif self.config.lower_order_final and len(state.timesteps) < 15: | 
					
						
						|  | prev_sample = jax.lax.select( | 
					
						
						|  | state.lower_order_nums < 1, | 
					
						
						|  | step_1_output, | 
					
						
						|  | jax.lax.select( | 
					
						
						|  | step_index == len(state.timesteps) - 1, | 
					
						
						|  | step_1_output, | 
					
						
						|  | step_23_output, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | prev_sample = jax.lax.select( | 
					
						
						|  | state.lower_order_nums < 1, | 
					
						
						|  | step_1_output, | 
					
						
						|  | step_23_output, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | state = state.replace( | 
					
						
						|  | lower_order_nums=jnp.minimum(state.lower_order_nums + 1, self.config.solver_order), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (prev_sample, state) | 
					
						
						|  |  | 
					
						
						|  | return FlaxDPMSolverMultistepSchedulerOutput(prev_sample=prev_sample, state=state) | 
					
						
						|  |  | 
					
						
						|  | def scale_model_input( | 
					
						
						|  | self, state: DPMSolverMultistepSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None | 
					
						
						|  | ) -> jnp.ndarray: | 
					
						
						|  | """ | 
					
						
						|  | Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | 
					
						
						|  | current timestep. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | state (`DPMSolverMultistepSchedulerState`): | 
					
						
						|  | the `FlaxDPMSolverMultistepScheduler` state data class instance. | 
					
						
						|  | sample (`jnp.ndarray`): input sample | 
					
						
						|  | timestep (`int`, optional): current timestep | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `jnp.ndarray`: scaled input sample | 
					
						
						|  | """ | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | def add_noise( | 
					
						
						|  | self, | 
					
						
						|  | state: DPMSolverMultistepSchedulerState, | 
					
						
						|  | original_samples: jnp.ndarray, | 
					
						
						|  | noise: jnp.ndarray, | 
					
						
						|  | timesteps: jnp.ndarray, | 
					
						
						|  | ) -> jnp.ndarray: | 
					
						
						|  | return add_noise_common(state.common, original_samples, noise, timesteps) | 
					
						
						|  |  | 
					
						
						|  | def __len__(self): | 
					
						
						|  | return self.config.num_train_timesteps | 
					
						
						|  |  |