Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from datasets import load_dataset
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# Load model and tokenizer
|
7 |
+
model_name = "google/flan-t5-small"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Load CSV data (replace with your dataset logic)
|
12 |
+
def load_data():
|
13 |
+
dataset = load_dataset("csv", data_files={"train": "train.csv"}) # Adjust path
|
14 |
+
return dataset["train"]
|
15 |
+
|
16 |
+
# Generate text (inference)
|
17 |
+
def generate_text(prompt):
|
18 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
19 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
20 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
|
22 |
+
# Fine-tune button (simplified example)
|
23 |
+
def fine_tune():
|
24 |
+
dataset = load_data()
|
25 |
+
# Add your training logic here (see previous examples)
|
26 |
+
return "Fine-tuning complete! (Note: Models reset when Space stops.)"
|
27 |
+
|
28 |
+
# Gradio UI
|
29 |
+
with gr.Blocks() as demo:
|
30 |
+
gr.Markdown("# FLAN-T5 Demo")
|
31 |
+
with gr.Tab("Generate Text"):
|
32 |
+
prompt = gr.Textbox(label="Input Prompt")
|
33 |
+
generate_btn = gr.Button("Generate")
|
34 |
+
output = gr.Textbox(label="Output")
|
35 |
+
generate_btn.click(fn=generate_text, inputs=prompt, outputs=output)
|
36 |
+
|
37 |
+
with gr.Tab("Fine-Tune"):
|
38 |
+
train_btn = gr.Button("Train on CSV Data")
|
39 |
+
train_output = gr.Textbox(label="Training Status")
|
40 |
+
train_btn.click(fn=fine_tune, outputs=train_output)
|
41 |
+
|
42 |
+
demo.launch()
|