LPX55 commited on
Commit
2b91516
·
verified ·
1 Parent(s): 38c0d61

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +212 -6
README.md CHANGED
@@ -1,13 +1,14 @@
1
  ---
2
- title: REST API with Gradio and Huggingface Spaces
3
- emoji: 👩‍💻
4
  colorFrom: blue
5
- colorTo: green
6
  sdk: gradio
7
  sdk_version: 5.34.2
8
  app_file: app.py
9
- pinned: false
10
- license: openrail
 
11
  ---
12
 
13
  # Dynamic Space Loading
@@ -64,4 +65,209 @@ license: openrail
64
 
65
  ---
66
 
67
- **If you want a code example for tab-to-tab data sharing, or want to explore advanced iframe communication (with custom JS), let me know!**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Dynamic Tab Loading Examples
3
+ emoji: 🏢
4
  colorFrom: blue
5
+ colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 5.34.2
8
  app_file: app.py
9
+ pinned: true
10
+ license: apache-2.0
11
+ short_description: Exploring different loading methods for a HF Space
12
  ---
13
 
14
  # Dynamic Space Loading
 
65
 
66
  ---
67
 
68
+ This is a very insightful and advanced question! Here’s a breakdown of what’s possible, what’s not, and what’s practical with Gradio, Hugging Face Spaces, and Python environments:
69
+
70
+ ---
71
+
72
+ ## 2. **GPU Spaces (transformers/diffusers) Loading/Unloading**
73
+
74
+ ### **A. In a Single Python Process (One Space, One App)**
75
+ - **You can load multiple models/pipelines in one Gradio app.**
76
+ - You can have a dropdown or tabs to select which model/task/pipeline to use.
77
+ - You can load/unload models on demand (though loading large models is slow).
78
+ - You can keep all models in memory (if you have enough GPU RAM), or load/unload as needed.
79
+ - **You cannot have truly separate environments** (e.g., different Python dependencies, CUDA versions, or isolated memory) in a single Space.
80
+ - All code runs in the same Python process/environment.
81
+ - All models share the same GPU/CPU memory pool.
82
+
83
+ #### **Example:**
84
+ ```python
85
+ from transformers import pipeline
86
+ import gradio as gr
87
+
88
+ # Preload or lazy-load multiple pipelines
89
+ pipe1 = pipeline("text-generation", model="gpt2")
90
+ pipe2 = pipeline("image-classification", model="google/vit-base-patch16-224")
91
+
92
+ def run_model(input, model_choice):
93
+ if model_choice == "Text Generation":
94
+ return pipe1(input)
95
+ elif model_choice == "Image Classification":
96
+ return pipe2(input)
97
+ # ... more models
98
+
99
+ gr.Interface(
100
+ fn=run_model,
101
+ inputs=[gr.Textbox(), gr.Dropdown(["Text Generation", "Image Classification"])],
102
+ outputs="auto"
103
+ ).launch()
104
+ ```
105
+ - You can use tabs or dropdowns to switch between models/tasks.
106
+
107
+ ---
108
+
109
+ ### **B. Multiple Gradio Apps in One Space**
110
+ - You can define multiple Gradio interfaces in one script and show/hide them with tabs or dropdowns.
111
+ - **But:** They still share the same Python process and memory.
112
+
113
+ ---
114
+
115
+ ### **C. True Isolation (Multiple Environments)**
116
+ - **Not possible in a single Hugging Face Space.**
117
+ - You cannot have multiple Python environments, different dependency sets, or isolated GPU memory pools in one Space.
118
+ - Each Space is a single container/process.
119
+
120
+ ---
121
+
122
+ ### **D. What About Docker or Subprocesses?**
123
+ - Hugging Face Spaces (hosted) do not support running multiple containers or true subprocess isolation with different environments.
124
+ - On your own infrastructure, you could use Docker or subprocesses, but this is not supported on Spaces.
125
+
126
+ ---
127
+
128
+ ## 3. **Best Practices for Multi-Model/Multi-Task Apps**
129
+
130
+ - **Lazy-load models:** Only load a model when its tab is selected, and unload it when switching (if memory is a concern).
131
+ - **Use a single environment:** Install all dependencies needed for all models in your `requirements.txt`.
132
+ - **Warn users about memory:** If users switch between large models, GPU memory may fill up and require manual cleanup (e.g., `torch.cuda.empty_cache()`).
133
+
134
+ ---
135
+
136
+ ## 4. **Summary Table**
137
+
138
+ | Approach | Isolation | Multiple Models | Multiple Envs | GPU Sharing | Supported on Spaces |
139
+ |----------------------------------|:---------:|:--------------:|:-------------:|:-----------:|:------------------:|
140
+ | Single Gradio app, many models | No | Yes | No | Yes | Yes |
141
+ | Multiple Gradio apps in one file | No | Yes | No | Yes | Yes |
142
+ | Multiple Spaces (one per app) | Yes | Yes | Yes | Isolated | Yes |
143
+ | Docker/subprocess isolation | Yes | Yes | Yes | Isolated | No (on Spaces) |
144
+
145
+ ---
146
+
147
+ ## 4. **What’s Practical?**
148
+
149
+ - **For most use cases:**
150
+ - Use a single app with tabs/dropdowns to select the model/task.
151
+ - Lazy-load and unload models as needed to manage memory.
152
+ - **For true isolation:**
153
+ - Use multiple Spaces (one per app/model) or host your own infrastructure with Docker.
154
+
155
+ ---
156
+
157
+ ## 5. **Properly Unloading Models, Weights, and Freeing Memory in PyTorch/Diffusers**
158
+
159
+ When working with large models (especially on GPU), it's important to:
160
+ - **Delete references to the model and pipeline**
161
+ - **Call `gc.collect()`** to trigger Python's garbage collector
162
+ - **Call `torch.cuda.empty_cache()`** (if using CUDA) to free GPU memory
163
+
164
+ ### **Best Practice Pattern**
165
+
166
+ Here’s a robust pattern for loading and unloading models in a multi-model Gradio app:
167
+
168
+ ```python
169
+ import torch
170
+ import gc
171
+ from diffusers import DiffusionPipeline
172
+
173
+ model_cache = {}
174
+
175
+ def load_diffusion_model(model_id, dtype=torch.float32, device="cpu"):
176
+ pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype)
177
+ pipe = pipe.to(device)
178
+ pipe.enable_attention_slicing()
179
+ return pipe
180
+
181
+ def unload_model(model_key):
182
+ # Remove from cache
183
+ if model_key in model_cache:
184
+ del model_cache[model_key]
185
+ # Run Python garbage collection
186
+ gc.collect()
187
+ # Free GPU memory if using CUDA
188
+ if torch.cuda.is_available():
189
+ torch.cuda.empty_cache()
190
+ ```
191
+
192
+ ### **How to Use in a Gradio Tab**
193
+
194
+ ```python
195
+ import gradio as gr
196
+
197
+ model_id = "LPX55/FLUX.1-merged_lightning_v2"
198
+ model_key = "flux"
199
+ device = "cpu" # or "cuda" if available and desired
200
+
201
+ def do_load():
202
+ if model_key not in model_cache:
203
+ model_cache[model_key] = load_diffusion_model(model_id, torch.float32, device)
204
+ return "Model loaded!"
205
+
206
+ def do_unload():
207
+ unload_model(model_key)
208
+ return "Model unloaded!"
209
+
210
+ def run_inference(prompt, width, height, steps):
211
+ if model_key not in model_cache:
212
+ return None, "Model not loaded!"
213
+ pipe = model_cache[model_key]
214
+ image = pipe(
215
+ prompt=prompt,
216
+ width=width,
217
+ height=height,
218
+ num_inference_steps=steps,
219
+ ).images[0]
220
+ return image, "Success!"
221
+
222
+ with gr.Blocks() as demo:
223
+ status = gr.Markdown("Model not loaded.")
224
+ load_btn = gr.Button("Load Model")
225
+ unload_btn = gr.Button("Unload Model")
226
+ prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world")
227
+ width = gr.Slider(256, 1536, value=768, step=64, label="Width")
228
+ height = gr.Slider(256, 1536, value=1152, step=64, label="Height")
229
+ steps = gr.Slider(1, 50, value=8, step=1, label="Inference Steps")
230
+ run_btn = gr.Button("Generate Image")
231
+ output_img = gr.Image(label="Output Image")
232
+ output_msg = gr.Textbox(label="Status", interactive=False)
233
+
234
+ load_btn.click(do_load, None, status)
235
+ unload_btn.click(do_unload, None, status)
236
+ run_btn.click(run_inference, [prompt, width, height, steps], [output_img, output_msg])
237
+
238
+ demo.launch()
239
+ ```
240
+
241
+ ---
242
+
243
+ ### **Key Points**
244
+ - **Always delete the model from your cache/dictionary.**
245
+ - **Call `gc.collect()` after deleting the model.**
246
+ - **Call `torch.cuda.empty_cache()` if using CUDA.**
247
+ - **Do this every time you switch models or want to free memory.**
248
+
249
+ ---
250
+
251
+ ### **Advanced: Unloading All Models**
252
+
253
+ If you want to ensure all models are unloaded (e.g., when switching tabs):
254
+
255
+ ```python
256
+ def unload_all_models():
257
+ model_cache.clear()
258
+ gc.collect()
259
+ if torch.cuda.is_available():
260
+ torch.cuda.empty_cache()
261
+ ```
262
+
263
+ ---
264
+
265
+ ### **Summary Table**
266
+
267
+ | Step | CPU | GPU (CUDA) |
268
+ |---------------------|-----|------------|
269
+ | Delete model object | ✅ | ✅ |
270
+ | `gc.collect()` | ✅ | ✅ |
271
+ | `torch.cuda.empty_cache()` | ❌ | ✅ |
272
+
273
+ ---