Spaces:
Runtime error
Runtime error
Update README.md
Browse files
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.34.2
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
-
license:
|
|
|
11 |
---
|
12 |
|
13 |
# Dynamic Space Loading
|
@@ -64,4 +65,209 @@ license: openrail
|
|
64 |
|
65 |
---
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Dynamic Tab Loading Examples
|
3 |
+
emoji: 🏢
|
4 |
colorFrom: blue
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.34.2
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: apache-2.0
|
11 |
+
short_description: Exploring different loading methods for a HF Space
|
12 |
---
|
13 |
|
14 |
# Dynamic Space Loading
|
|
|
65 |
|
66 |
---
|
67 |
|
68 |
+
This is a very insightful and advanced question! Here’s a breakdown of what’s possible, what’s not, and what’s practical with Gradio, Hugging Face Spaces, and Python environments:
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
## 2. **GPU Spaces (transformers/diffusers) Loading/Unloading**
|
73 |
+
|
74 |
+
### **A. In a Single Python Process (One Space, One App)**
|
75 |
+
- **You can load multiple models/pipelines in one Gradio app.**
|
76 |
+
- You can have a dropdown or tabs to select which model/task/pipeline to use.
|
77 |
+
- You can load/unload models on demand (though loading large models is slow).
|
78 |
+
- You can keep all models in memory (if you have enough GPU RAM), or load/unload as needed.
|
79 |
+
- **You cannot have truly separate environments** (e.g., different Python dependencies, CUDA versions, or isolated memory) in a single Space.
|
80 |
+
- All code runs in the same Python process/environment.
|
81 |
+
- All models share the same GPU/CPU memory pool.
|
82 |
+
|
83 |
+
#### **Example:**
|
84 |
+
```python
|
85 |
+
from transformers import pipeline
|
86 |
+
import gradio as gr
|
87 |
+
|
88 |
+
# Preload or lazy-load multiple pipelines
|
89 |
+
pipe1 = pipeline("text-generation", model="gpt2")
|
90 |
+
pipe2 = pipeline("image-classification", model="google/vit-base-patch16-224")
|
91 |
+
|
92 |
+
def run_model(input, model_choice):
|
93 |
+
if model_choice == "Text Generation":
|
94 |
+
return pipe1(input)
|
95 |
+
elif model_choice == "Image Classification":
|
96 |
+
return pipe2(input)
|
97 |
+
# ... more models
|
98 |
+
|
99 |
+
gr.Interface(
|
100 |
+
fn=run_model,
|
101 |
+
inputs=[gr.Textbox(), gr.Dropdown(["Text Generation", "Image Classification"])],
|
102 |
+
outputs="auto"
|
103 |
+
).launch()
|
104 |
+
```
|
105 |
+
- You can use tabs or dropdowns to switch between models/tasks.
|
106 |
+
|
107 |
+
---
|
108 |
+
|
109 |
+
### **B. Multiple Gradio Apps in One Space**
|
110 |
+
- You can define multiple Gradio interfaces in one script and show/hide them with tabs or dropdowns.
|
111 |
+
- **But:** They still share the same Python process and memory.
|
112 |
+
|
113 |
+
---
|
114 |
+
|
115 |
+
### **C. True Isolation (Multiple Environments)**
|
116 |
+
- **Not possible in a single Hugging Face Space.**
|
117 |
+
- You cannot have multiple Python environments, different dependency sets, or isolated GPU memory pools in one Space.
|
118 |
+
- Each Space is a single container/process.
|
119 |
+
|
120 |
+
---
|
121 |
+
|
122 |
+
### **D. What About Docker or Subprocesses?**
|
123 |
+
- Hugging Face Spaces (hosted) do not support running multiple containers or true subprocess isolation with different environments.
|
124 |
+
- On your own infrastructure, you could use Docker or subprocesses, but this is not supported on Spaces.
|
125 |
+
|
126 |
+
---
|
127 |
+
|
128 |
+
## 3. **Best Practices for Multi-Model/Multi-Task Apps**
|
129 |
+
|
130 |
+
- **Lazy-load models:** Only load a model when its tab is selected, and unload it when switching (if memory is a concern).
|
131 |
+
- **Use a single environment:** Install all dependencies needed for all models in your `requirements.txt`.
|
132 |
+
- **Warn users about memory:** If users switch between large models, GPU memory may fill up and require manual cleanup (e.g., `torch.cuda.empty_cache()`).
|
133 |
+
|
134 |
+
---
|
135 |
+
|
136 |
+
## 4. **Summary Table**
|
137 |
+
|
138 |
+
| Approach | Isolation | Multiple Models | Multiple Envs | GPU Sharing | Supported on Spaces |
|
139 |
+
|----------------------------------|:---------:|:--------------:|:-------------:|:-----------:|:------------------:|
|
140 |
+
| Single Gradio app, many models | No | Yes | No | Yes | Yes |
|
141 |
+
| Multiple Gradio apps in one file | No | Yes | No | Yes | Yes |
|
142 |
+
| Multiple Spaces (one per app) | Yes | Yes | Yes | Isolated | Yes |
|
143 |
+
| Docker/subprocess isolation | Yes | Yes | Yes | Isolated | No (on Spaces) |
|
144 |
+
|
145 |
+
---
|
146 |
+
|
147 |
+
## 4. **What’s Practical?**
|
148 |
+
|
149 |
+
- **For most use cases:**
|
150 |
+
- Use a single app with tabs/dropdowns to select the model/task.
|
151 |
+
- Lazy-load and unload models as needed to manage memory.
|
152 |
+
- **For true isolation:**
|
153 |
+
- Use multiple Spaces (one per app/model) or host your own infrastructure with Docker.
|
154 |
+
|
155 |
+
---
|
156 |
+
|
157 |
+
## 5. **Properly Unloading Models, Weights, and Freeing Memory in PyTorch/Diffusers**
|
158 |
+
|
159 |
+
When working with large models (especially on GPU), it's important to:
|
160 |
+
- **Delete references to the model and pipeline**
|
161 |
+
- **Call `gc.collect()`** to trigger Python's garbage collector
|
162 |
+
- **Call `torch.cuda.empty_cache()`** (if using CUDA) to free GPU memory
|
163 |
+
|
164 |
+
### **Best Practice Pattern**
|
165 |
+
|
166 |
+
Here’s a robust pattern for loading and unloading models in a multi-model Gradio app:
|
167 |
+
|
168 |
+
```python
|
169 |
+
import torch
|
170 |
+
import gc
|
171 |
+
from diffusers import DiffusionPipeline
|
172 |
+
|
173 |
+
model_cache = {}
|
174 |
+
|
175 |
+
def load_diffusion_model(model_id, dtype=torch.float32, device="cpu"):
|
176 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype)
|
177 |
+
pipe = pipe.to(device)
|
178 |
+
pipe.enable_attention_slicing()
|
179 |
+
return pipe
|
180 |
+
|
181 |
+
def unload_model(model_key):
|
182 |
+
# Remove from cache
|
183 |
+
if model_key in model_cache:
|
184 |
+
del model_cache[model_key]
|
185 |
+
# Run Python garbage collection
|
186 |
+
gc.collect()
|
187 |
+
# Free GPU memory if using CUDA
|
188 |
+
if torch.cuda.is_available():
|
189 |
+
torch.cuda.empty_cache()
|
190 |
+
```
|
191 |
+
|
192 |
+
### **How to Use in a Gradio Tab**
|
193 |
+
|
194 |
+
```python
|
195 |
+
import gradio as gr
|
196 |
+
|
197 |
+
model_id = "LPX55/FLUX.1-merged_lightning_v2"
|
198 |
+
model_key = "flux"
|
199 |
+
device = "cpu" # or "cuda" if available and desired
|
200 |
+
|
201 |
+
def do_load():
|
202 |
+
if model_key not in model_cache:
|
203 |
+
model_cache[model_key] = load_diffusion_model(model_id, torch.float32, device)
|
204 |
+
return "Model loaded!"
|
205 |
+
|
206 |
+
def do_unload():
|
207 |
+
unload_model(model_key)
|
208 |
+
return "Model unloaded!"
|
209 |
+
|
210 |
+
def run_inference(prompt, width, height, steps):
|
211 |
+
if model_key not in model_cache:
|
212 |
+
return None, "Model not loaded!"
|
213 |
+
pipe = model_cache[model_key]
|
214 |
+
image = pipe(
|
215 |
+
prompt=prompt,
|
216 |
+
width=width,
|
217 |
+
height=height,
|
218 |
+
num_inference_steps=steps,
|
219 |
+
).images[0]
|
220 |
+
return image, "Success!"
|
221 |
+
|
222 |
+
with gr.Blocks() as demo:
|
223 |
+
status = gr.Markdown("Model not loaded.")
|
224 |
+
load_btn = gr.Button("Load Model")
|
225 |
+
unload_btn = gr.Button("Unload Model")
|
226 |
+
prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world")
|
227 |
+
width = gr.Slider(256, 1536, value=768, step=64, label="Width")
|
228 |
+
height = gr.Slider(256, 1536, value=1152, step=64, label="Height")
|
229 |
+
steps = gr.Slider(1, 50, value=8, step=1, label="Inference Steps")
|
230 |
+
run_btn = gr.Button("Generate Image")
|
231 |
+
output_img = gr.Image(label="Output Image")
|
232 |
+
output_msg = gr.Textbox(label="Status", interactive=False)
|
233 |
+
|
234 |
+
load_btn.click(do_load, None, status)
|
235 |
+
unload_btn.click(do_unload, None, status)
|
236 |
+
run_btn.click(run_inference, [prompt, width, height, steps], [output_img, output_msg])
|
237 |
+
|
238 |
+
demo.launch()
|
239 |
+
```
|
240 |
+
|
241 |
+
---
|
242 |
+
|
243 |
+
### **Key Points**
|
244 |
+
- **Always delete the model from your cache/dictionary.**
|
245 |
+
- **Call `gc.collect()` after deleting the model.**
|
246 |
+
- **Call `torch.cuda.empty_cache()` if using CUDA.**
|
247 |
+
- **Do this every time you switch models or want to free memory.**
|
248 |
+
|
249 |
+
---
|
250 |
+
|
251 |
+
### **Advanced: Unloading All Models**
|
252 |
+
|
253 |
+
If you want to ensure all models are unloaded (e.g., when switching tabs):
|
254 |
+
|
255 |
+
```python
|
256 |
+
def unload_all_models():
|
257 |
+
model_cache.clear()
|
258 |
+
gc.collect()
|
259 |
+
if torch.cuda.is_available():
|
260 |
+
torch.cuda.empty_cache()
|
261 |
+
```
|
262 |
+
|
263 |
+
---
|
264 |
+
|
265 |
+
### **Summary Table**
|
266 |
+
|
267 |
+
| Step | CPU | GPU (CUDA) |
|
268 |
+
|---------------------|-----|------------|
|
269 |
+
| Delete model object | ✅ | ✅ |
|
270 |
+
| `gc.collect()` | ✅ | ✅ |
|
271 |
+
| `torch.cuda.empty_cache()` | ❌ | ✅ |
|
272 |
+
|
273 |
+
---
|