Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from scrapegraphai.graphs import SmartScraperGraph
|
| 4 |
+
from scrapegraphai.utils import prettify_exec_info
|
| 5 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 6 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import subprocess
|
| 9 |
+
import json
|
| 10 |
+
import re
|
| 11 |
+
|
| 12 |
+
# Ensure Playwright installs required browsers and dependencies
|
| 13 |
+
subprocess.run(["playwright", "install"])
|
| 14 |
+
#subprocess.run(["playwright", "install-deps"])
|
| 15 |
+
|
| 16 |
+
# Load environment variables
|
| 17 |
+
load_dotenv()
|
| 18 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
| 19 |
+
|
| 20 |
+
# Initialize the model instances
|
| 21 |
+
#repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 22 |
+
repo_id = "Qwen/Qwen2.5-72B-Instruct"
|
| 23 |
+
|
| 24 |
+
llm_model_instance = HuggingFaceEndpoint(
|
| 25 |
+
repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
embedder_model_instance = HuggingFaceInferenceAPIEmbeddings(
|
| 29 |
+
api_key=HUGGINGFACEHUB_API_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
graph_config = {
|
| 33 |
+
"llm": {
|
| 34 |
+
"model_instance": llm_model_instance,
|
| 35 |
+
"model_tokens": 100000,
|
| 36 |
+
},
|
| 37 |
+
"embeddings": {"model_instance": embedder_model_instance}
|
| 38 |
+
}
|
| 39 |
+
#######
|
| 40 |
+
def clean_json_string(json_str):
|
| 41 |
+
"""
|
| 42 |
+
Removes any comments or prefixes before the actual JSON content.
|
| 43 |
+
Returns the cleaned JSON string.
|
| 44 |
+
"""
|
| 45 |
+
# Find the first occurrence of '{'
|
| 46 |
+
json_start = json_str.find('{')
|
| 47 |
+
if json_start == -1:
|
| 48 |
+
# If no '{' is found, try with '[' for arrays
|
| 49 |
+
json_start = json_str.find('[')
|
| 50 |
+
if json_start == -1:
|
| 51 |
+
return json_str # Return original if no JSON markers found
|
| 52 |
+
|
| 53 |
+
# Extract everything from the first JSON marker
|
| 54 |
+
cleaned_str = json_str[json_start:]
|
| 55 |
+
|
| 56 |
+
# Verify it's valid JSON
|
| 57 |
+
try:
|
| 58 |
+
json.loads(cleaned_str)
|
| 59 |
+
return cleaned_str
|
| 60 |
+
except json.JSONDecodeError:
|
| 61 |
+
return json_str # Return original if cleaning results in invalid JSON
|
| 62 |
+
|
| 63 |
+
def scrape_and_summarize(prompt, source):
|
| 64 |
+
smart_scraper_graph = SmartScraperGraph(
|
| 65 |
+
prompt=prompt,
|
| 66 |
+
source=source,
|
| 67 |
+
config=graph_config
|
| 68 |
+
)
|
| 69 |
+
result = smart_scraper_graph.run()
|
| 70 |
+
|
| 71 |
+
# Clean the result if it's a string
|
| 72 |
+
if isinstance(result, str):
|
| 73 |
+
result = clean_json_string(result)
|
| 74 |
+
|
| 75 |
+
exec_info = smart_scraper_graph.get_execution_info()
|
| 76 |
+
return result, prettify_exec_info(exec_info)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
#######
|
| 81 |
+
# def scrape_and_summarize(prompt, source):
|
| 82 |
+
# smart_scraper_graph = SmartScraperGraph(
|
| 83 |
+
# prompt=prompt,
|
| 84 |
+
# source=source,
|
| 85 |
+
# config=graph_config
|
| 86 |
+
# )
|
| 87 |
+
# result = smart_scraper_graph.run()
|
| 88 |
+
# exec_info = smart_scraper_graph.get_execution_info()
|
| 89 |
+
# return result, prettify_exec_info(exec_info)
|
| 90 |
+
|
| 91 |
+
# Gradio interface
|
| 92 |
+
with gr.Blocks() as demo:
|
| 93 |
+
gr.Markdown("# Scrape websites, no-code version")
|
| 94 |
+
gr.Markdown("""
|
| 95 |
+
Easily scrape and summarize web content using advanced AI models on the Hugging Face Hub without writing any code. Input your desired prompt and source URL to get started.
|
| 96 |
+
|
| 97 |
+
*Note: You might need to add "Output only the results; do not add any comments or include 'JSON OUTPUT' or similar phrases" in your prompt to ensure the LLM only provides the result.*
|
| 98 |
+
""")
|
| 99 |
+
with gr.Row():
|
| 100 |
+
with gr.Column():
|
| 101 |
+
|
| 102 |
+
model_dropdown = gr.Textbox(label="Model", value="Qwen/Qwen2.5-72B-Instruct")
|
| 103 |
+
prompt_input = gr.Textbox(label="Prompt", value="List all the press releases with their headlines and urls. Output only the results; do not add any comments or include 'JSON OUTPUT' or similar phrases.")
|
| 104 |
+
source_input = gr.Textbox(label="Source URL", value="https://www.whitehouse.gov/")
|
| 105 |
+
scrape_button = gr.Button("Scrape and Summarize")
|
| 106 |
+
|
| 107 |
+
with gr.Column():
|
| 108 |
+
result_output = gr.JSON(label="Result")
|
| 109 |
+
exec_info_output = gr.Textbox(label="Execution Info")
|
| 110 |
+
|
| 111 |
+
scrape_button.click(
|
| 112 |
+
scrape_and_summarize,
|
| 113 |
+
inputs=[prompt_input, source_input],
|
| 114 |
+
outputs=[result_output, exec_info_output]
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Launch the Gradio app
|
| 118 |
+
if __name__ == "__main__":
|
| 119 |
+
demo.launch()
|