Spaces:
Running
on
Zero
Running
on
Zero
test: new cap
Browse files
app_v3.py
CHANGED
|
@@ -1,6 +1,10 @@
|
|
| 1 |
import torch
|
|
|
|
|
|
|
|
|
|
| 2 |
import spaces
|
| 3 |
import os
|
|
|
|
| 4 |
from diffusers.utils import load_image
|
| 5 |
from diffusers.hooks import apply_group_offloading
|
| 6 |
from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
|
|
@@ -17,12 +21,15 @@ import gradio as gr
|
|
| 17 |
|
| 18 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 19 |
MAX_SEED = 1000000
|
| 20 |
-
MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava"
|
| 21 |
-
cap_processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
| 22 |
-
cap_model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0)
|
| 23 |
-
assert isinstance(cap_model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(cap_model)}"
|
| 24 |
-
cap_model.eval()
|
| 25 |
-
apply_liger_kernel_to_llama(model=cap_model.language_model)
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
text_encoder_2_unquant = T5EncoderModel.from_pretrained(
|
| 28 |
"LPX55/FLUX.1-merged_uncensored",
|
|
@@ -114,23 +121,27 @@ def process_image(control_image, user_prompt, system_prompt, scale, steps,
|
|
| 114 |
|
| 115 |
# If no user prompt provided, generate a caption first
|
| 116 |
if not final_prompt:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
# Generate caption
|
| 118 |
-
caption_gen = caption(
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
)
|
| 126 |
|
| 127 |
# Get the full caption by exhausting the generator
|
| 128 |
-
generated_caption = ""
|
| 129 |
-
for chunk in caption_gen:
|
| 130 |
-
|
| 131 |
-
|
| 132 |
|
| 133 |
-
final_prompt =
|
| 134 |
yield f"Using caption: {final_prompt}", None
|
| 135 |
|
| 136 |
# Show the final prompt being used
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import subprocess
|
| 3 |
+
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
| 4 |
+
|
| 5 |
import spaces
|
| 6 |
import os
|
| 7 |
+
import moondream as md
|
| 8 |
from diffusers.utils import load_image
|
| 9 |
from diffusers.hooks import apply_group_offloading
|
| 10 |
from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
|
|
|
|
| 21 |
|
| 22 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 23 |
MAX_SEED = 1000000
|
| 24 |
+
# MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava"
|
| 25 |
+
# cap_processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
| 26 |
+
# cap_model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0)
|
| 27 |
+
# assert isinstance(cap_model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(cap_model)}"
|
| 28 |
+
# cap_model.eval()
|
| 29 |
+
# apply_liger_kernel_to_llama(model=cap_model.language_model)
|
| 30 |
+
|
| 31 |
+
md_api_key = os.getenv("MD_KEY")
|
| 32 |
+
model = md.vl(api_key=md_api_key)
|
| 33 |
|
| 34 |
text_encoder_2_unquant = T5EncoderModel.from_pretrained(
|
| 35 |
"LPX55/FLUX.1-merged_uncensored",
|
|
|
|
| 121 |
|
| 122 |
# If no user prompt provided, generate a caption first
|
| 123 |
if not final_prompt:
|
| 124 |
+
# Generate a detailed caption
|
| 125 |
+
mcaption = model.caption(control_image, length="long")
|
| 126 |
+
detailed_caption = mcaption["caption"]
|
| 127 |
+
print(f"Detailed caption: {detailed_caption}")
|
| 128 |
# Generate caption
|
| 129 |
+
# caption_gen = caption(
|
| 130 |
+
# input_image=control_image,
|
| 131 |
+
# prompt=system_prompt,
|
| 132 |
+
# temperature=temperature,
|
| 133 |
+
# top_p=top_p,
|
| 134 |
+
# max_new_tokens=max_new_tokens,
|
| 135 |
+
# log_prompt=log_prompt
|
| 136 |
+
# )
|
| 137 |
|
| 138 |
# Get the full caption by exhausting the generator
|
| 139 |
+
# generated_caption = ""
|
| 140 |
+
# for chunk in caption_gen:
|
| 141 |
+
# generated_caption += chunk
|
| 142 |
+
# yield generated_caption, None # Update caption in real-time
|
| 143 |
|
| 144 |
+
final_prompt = detailed_caption
|
| 145 |
yield f"Using caption: {final_prompt}", None
|
| 146 |
|
| 147 |
# Show the final prompt being used
|