| import numpy as np | |
| import cv2 as cv | |
| from PIL import Image | |
| def norm_mat(mat): | |
| return cv.normalize(mat, None, 0, 255, cv.NORM_MINMAX).astype(np.uint8) | |
| def equalize_img(img): | |
| ycrcb = cv.cvtColor(img, cv.COLOR_BGR2YCrCb) | |
| ycrcb[:, :, 0] = cv.equalizeHist(ycrcb[:, :, 0]) | |
| return cv.cvtColor(ycrcb, cv.COLOR_YCrCb2BGR) | |
| def create_lut(intensity, gamma): | |
| lut = np.zeros((256, 1, 3), dtype=np.uint8) | |
| for i in range(256): | |
| lut[i, 0, 0] = min(255, max(0, i + intensity)) | |
| lut[i, 0, 1] = min(255, max(0, i + intensity)) | |
| lut[i, 0, 2] = min(255, max(0, i + intensity)) | |
| return lut | |
| def gradient_processing(image, intensity=90, blue_mode="Abs", invert=False, equalize=False): | |
| image = np.array(image) | |
| dx, dy = cv.spatialGradient(cv.cvtColor(image, cv.COLOR_BGR2GRAY)) | |
| intensity = int(intensity / 100 * 127) | |
| if invert: | |
| dx = (-dx).astype(np.float32) | |
| dy = (-dy).astype(np.float32) | |
| else: | |
| dx = (+dx).astype(np.float32) | |
| dy = (+dy).astype(np.float32) | |
| dx_abs = np.abs(dx) | |
| dy_abs = np.abs(dy) | |
| red = ((dx / np.max(dx_abs) * 127) + 127).astype(np.uint8) | |
| green = ((dy / np.max(dy_abs) * 127) + 127).astype(np.uint8) | |
| if blue_mode == "None": | |
| blue = np.zeros_like(red) | |
| elif blue_mode == "Flat": | |
| blue = np.full_like(red, 255) | |
| elif blue_mode == "Abs": | |
| blue = norm_mat(dx_abs + dy_abs) | |
| elif blue_mode == "Norm": | |
| blue = norm_mat(np.linalg.norm(cv.merge((red, green)), axis=2)) | |
| else: | |
| blue = None | |
| gradient = cv.merge([blue, green, red]) | |
| if equalize: | |
| gradient = equalize_img(gradient) | |
| elif intensity > 0: | |
| gradient = cv.LUT(gradient, create_lut(intensity, intensity)) | |
| return Image.fromarray(gradient) |