Spaces:
				
			
			
	
			
			
		Configuration error
		
	
	
	
			
			
	
	
	
	
		
		
		Configuration error
		
	
		ResearcherXman
		
	commited on
		
		
					Commit 
							
							·
						
						334996e
	
1
								Parent(s):
							
							977a8a5
								
update
Browse files- examples/yann-lecun_resize.jpg +0 -0
- pipeline_stable_diffusion_xl_instantid.py +369 -1087
    	
        examples/yann-lecun_resize.jpg
    ADDED
    
    |   | 
    	
        pipeline_stable_diffusion_xl_instantid.py
    CHANGED
    
    | @@ -1,1126 +1,408 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
            #
         | 
| 3 | 
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            -
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            -
            # You may obtain a copy of the License at
         | 
| 6 | 
            -
            #
         | 
| 7 | 
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            -
            #
         | 
| 9 | 
            -
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            -
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            -
            # limitations under the License.
         | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         | 
| 17 | 
            -
             | 
| 18 | 
             
            import cv2
         | 
| 19 | 
             
            import math
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            import numpy as np
         | 
| 22 | 
            -
            import PIL.Image
         | 
| 23 | 
             
            import torch
         | 
| 24 | 
            -
            import  | 
| 25 | 
            -
             | 
| 26 |  | 
| 27 | 
            -
             | 
|  | |
| 28 |  | 
|  | |
|  | |
| 29 | 
             
            from diffusers.models import ControlNetModel
         | 
| 30 |  | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
                logging,
         | 
| 34 | 
            -
                replace_example_docstring,
         | 
| 35 | 
            -
            )
         | 
| 36 | 
            -
            from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
         | 
| 37 | 
            -
            from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
         | 
| 38 |  | 
| 39 | 
            -
            from  | 
| 40 | 
            -
            from  | 
| 41 | 
            -
            from diffusers.utils.import_utils import is_xformers_available
         | 
| 42 |  | 
| 43 | 
            -
             | 
|  | |
| 44 |  | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
|  | |
|  | |
|  | |
| 47 |  | 
| 48 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 49 |  | 
|  | |
|  | |
|  | |
| 50 |  | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
| 54 | 
            -
                    >>> # !pip install opencv-python transformers accelerate insightface
         | 
| 55 | 
            -
                    >>> import diffusers
         | 
| 56 | 
            -
                    >>> from diffusers.utils import load_image
         | 
| 57 | 
            -
                    >>> from diffusers.models import ControlNetModel
         | 
| 58 |  | 
| 59 | 
            -
             | 
| 60 | 
            -
             | 
| 61 | 
            -
                    >>> import numpy as np
         | 
| 62 | 
            -
                    >>> from PIL import Image
         | 
| 63 | 
            -
                    
         | 
| 64 | 
            -
                    >>> from insightface.app import FaceAnalysis
         | 
| 65 | 
            -
                    >>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
         | 
| 66 | 
            -
             | 
| 67 | 
            -
                    >>> # download 'antelopev2' under ./models
         | 
| 68 | 
            -
                    >>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
         | 
| 69 | 
            -
                    >>> app.prepare(ctx_id=0, det_size=(640, 640))
         | 
| 70 | 
            -
                    
         | 
| 71 | 
            -
                    >>> # download models under ./checkpoints
         | 
| 72 | 
            -
                    >>> face_adapter = f'./checkpoints/ip-adapter.bin'
         | 
| 73 | 
            -
                    >>> controlnet_path = f'./checkpoints/ControlNetModel'
         | 
| 74 | 
            -
                    
         | 
| 75 | 
            -
                    >>> # load IdentityNet
         | 
| 76 | 
            -
                    >>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
         | 
| 77 | 
            -
                    
         | 
| 78 | 
            -
                    >>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
         | 
| 79 | 
            -
                    ...     "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
         | 
| 80 | 
            -
                    ... )
         | 
| 81 | 
            -
                    >>> pipe.cuda()
         | 
| 82 | 
            -
                    
         | 
| 83 | 
            -
                    >>> # load adapter
         | 
| 84 | 
            -
                    >>> pipe.load_ip_adapter_instantid(face_adapter)
         | 
| 85 |  | 
| 86 | 
            -
             | 
| 87 | 
            -
                    >>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
         | 
| 88 |  | 
| 89 | 
            -
             | 
| 90 | 
            -
             | 
| 91 | 
            -
             | 
| 92 | 
            -
             | 
| 93 | 
            -
             | 
| 94 | 
            -
             | 
| 95 | 
            -
             | 
| 96 | 
            -
             | 
| 97 | 
            -
             | 
| 98 | 
            -
             | 
| 99 | 
            -
             | 
| 100 | 
            -
             | 
| 101 | 
            -
                     | 
| 102 | 
            -
             | 
| 103 | 
            -
             | 
| 104 | 
            -
             | 
| 105 | 
            -
             | 
| 106 | 
            -
             | 
| 107 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 108 |  | 
| 109 | 
            -
                 | 
| 110 | 
            -
             | 
| 111 | 
            -
                """
         | 
| 112 |  | 
| 113 | 
            -
                 | 
| 114 | 
            -
             | 
| 115 | 
            -
             | 
| 116 | 
            -
                def parse_prompt_attention(self, text):
         | 
| 117 | 
            -
                    """
         | 
| 118 | 
            -
                    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
         | 
| 119 | 
            -
                    Accepted tokens are:
         | 
| 120 | 
            -
                    (abc) - increases attention to abc by a multiplier of 1.1
         | 
| 121 | 
            -
                    (abc:3.12) - increases attention to abc by a multiplier of 3.12
         | 
| 122 | 
            -
                    [abc] - decreases attention to abc by a multiplier of 1.1
         | 
| 123 | 
            -
                    \( - literal character '('
         | 
| 124 | 
            -
                    \[ - literal character '['
         | 
| 125 | 
            -
                    \) - literal character ')'
         | 
| 126 | 
            -
                    \] - literal character ']'
         | 
| 127 | 
            -
                    \\ - literal character '\'
         | 
| 128 | 
            -
                    anything else - just text
         | 
| 129 | 
            -
             | 
| 130 | 
            -
                    >>> parse_prompt_attention('normal text')
         | 
| 131 | 
            -
                    [['normal text', 1.0]]
         | 
| 132 | 
            -
                    >>> parse_prompt_attention('an (important) word')
         | 
| 133 | 
            -
                    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
         | 
| 134 | 
            -
                    >>> parse_prompt_attention('(unbalanced')
         | 
| 135 | 
            -
                    [['unbalanced', 1.1]]
         | 
| 136 | 
            -
                    >>> parse_prompt_attention('\(literal\]')
         | 
| 137 | 
            -
                    [['(literal]', 1.0]]
         | 
| 138 | 
            -
                    >>> parse_prompt_attention('(unnecessary)(parens)')
         | 
| 139 | 
            -
                    [['unnecessaryparens', 1.1]]
         | 
| 140 | 
            -
                    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
         | 
| 141 | 
            -
                    [['a ', 1.0],
         | 
| 142 | 
            -
                    ['house', 1.5730000000000004],
         | 
| 143 | 
            -
                    [' ', 1.1],
         | 
| 144 | 
            -
                    ['on', 1.0],
         | 
| 145 | 
            -
                    [' a ', 1.1],
         | 
| 146 | 
            -
                    ['hill', 0.55],
         | 
| 147 | 
            -
                    [', sun, ', 1.1],
         | 
| 148 | 
            -
                    ['sky', 1.4641000000000006],
         | 
| 149 | 
            -
                    ['.', 1.1]]
         | 
| 150 | 
            -
                    """
         | 
| 151 | 
            -
                    import re
         | 
| 152 | 
            -
             | 
| 153 | 
            -
                    re_attention = re.compile(
         | 
| 154 | 
            -
                        r"""
         | 
| 155 | 
            -
                            \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
         | 
| 156 | 
            -
                            \)|]|[^\\()\[\]:]+|:
         | 
| 157 | 
            -
                        """,
         | 
| 158 | 
            -
                        re.X,
         | 
| 159 | 
            -
                    )
         | 
| 160 | 
            -
             | 
| 161 | 
            -
                    re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
         | 
| 162 | 
            -
             | 
| 163 | 
            -
                    res = []
         | 
| 164 | 
            -
                    round_brackets = []
         | 
| 165 | 
            -
                    square_brackets = []
         | 
| 166 | 
            -
             | 
| 167 | 
            -
                    round_bracket_multiplier = 1.1
         | 
| 168 | 
            -
                    square_bracket_multiplier = 1 / 1.1
         | 
| 169 | 
            -
             | 
| 170 | 
            -
                    def multiply_range(start_position, multiplier):
         | 
| 171 | 
            -
                        for p in range(start_position, len(res)):
         | 
| 172 | 
            -
                            res[p][1] *= multiplier
         | 
| 173 | 
            -
             | 
| 174 | 
            -
                    for m in re_attention.finditer(text):
         | 
| 175 | 
            -
                        text = m.group(0)
         | 
| 176 | 
            -
                        weight = m.group(1)
         | 
| 177 | 
            -
             | 
| 178 | 
            -
                        if text.startswith("\\"):
         | 
| 179 | 
            -
                            res.append([text[1:], 1.0])
         | 
| 180 | 
            -
                        elif text == "(":
         | 
| 181 | 
            -
                            round_brackets.append(len(res))
         | 
| 182 | 
            -
                        elif text == "[":
         | 
| 183 | 
            -
                            square_brackets.append(len(res))
         | 
| 184 | 
            -
                        elif weight is not None and len(round_brackets) > 0:
         | 
| 185 | 
            -
                            multiply_range(round_brackets.pop(), float(weight))
         | 
| 186 | 
            -
                        elif text == ")" and len(round_brackets) > 0:
         | 
| 187 | 
            -
                            multiply_range(round_brackets.pop(), round_bracket_multiplier)
         | 
| 188 | 
            -
                        elif text == "]" and len(square_brackets) > 0:
         | 
| 189 | 
            -
                            multiply_range(square_brackets.pop(), square_bracket_multiplier)
         | 
| 190 | 
            -
                        else:
         | 
| 191 | 
            -
                            parts = re.split(re_break, text)
         | 
| 192 | 
            -
                            for i, part in enumerate(parts):
         | 
| 193 | 
            -
                                if i > 0:
         | 
| 194 | 
            -
                                    res.append(["BREAK", -1])
         | 
| 195 | 
            -
                                res.append([part, 1.0])
         | 
| 196 | 
            -
             | 
| 197 | 
            -
                    for pos in round_brackets:
         | 
| 198 | 
            -
                        multiply_range(pos, round_bracket_multiplier)
         | 
| 199 | 
            -
             | 
| 200 | 
            -
                    for pos in square_brackets:
         | 
| 201 | 
            -
                        multiply_range(pos, square_bracket_multiplier)
         | 
| 202 | 
            -
             | 
| 203 | 
            -
                    if len(res) == 0:
         | 
| 204 | 
            -
                        res = [["", 1.0]]
         | 
| 205 | 
            -
             | 
| 206 | 
            -
                    # merge runs of identical weights
         | 
| 207 | 
            -
                    i = 0
         | 
| 208 | 
            -
                    while i + 1 < len(res):
         | 
| 209 | 
            -
                        if res[i][1] == res[i + 1][1]:
         | 
| 210 | 
            -
                            res[i][0] += res[i + 1][0]
         | 
| 211 | 
            -
                            res.pop(i + 1)
         | 
| 212 | 
            -
                        else:
         | 
| 213 | 
            -
                            i += 1
         | 
| 214 | 
            -
             | 
| 215 | 
            -
                    return res
         | 
| 216 | 
            -
             | 
| 217 | 
            -
                def get_prompts_tokens_with_weights(self, clip_tokenizer: CLIPTokenizer, prompt: str):
         | 
| 218 | 
            -
                    """
         | 
| 219 | 
            -
                    Get prompt token ids and weights, this function works for both prompt and negative prompt
         | 
| 220 | 
            -
             | 
| 221 | 
            -
                    Args:
         | 
| 222 | 
            -
                        pipe (CLIPTokenizer)
         | 
| 223 | 
            -
                            A CLIPTokenizer
         | 
| 224 | 
            -
                        prompt (str)
         | 
| 225 | 
            -
                            A prompt string with weights
         | 
| 226 | 
            -
             | 
| 227 | 
            -
                    Returns:
         | 
| 228 | 
            -
                        text_tokens (list)
         | 
| 229 | 
            -
                            A list contains token ids
         | 
| 230 | 
            -
                        text_weight (list)
         | 
| 231 | 
            -
                            A list contains the correspodent weight of token ids
         | 
| 232 | 
            -
             | 
| 233 | 
            -
                    Example:
         | 
| 234 | 
            -
                        import torch
         | 
| 235 | 
            -
                        from transformers import CLIPTokenizer
         | 
| 236 | 
            -
             | 
| 237 | 
            -
                        clip_tokenizer = CLIPTokenizer.from_pretrained(
         | 
| 238 | 
            -
                            "stablediffusionapi/deliberate-v2"
         | 
| 239 | 
            -
                            , subfolder = "tokenizer"
         | 
| 240 | 
            -
                            , dtype = torch.float16
         | 
| 241 | 
            -
                        )
         | 
| 242 | 
            -
             | 
| 243 | 
            -
                        token_id_list, token_weight_list = get_prompts_tokens_with_weights(
         | 
| 244 | 
            -
                            clip_tokenizer = clip_tokenizer
         | 
| 245 | 
            -
                            ,prompt = "a (red:1.5) cat"*70
         | 
| 246 | 
            -
                        )
         | 
| 247 | 
            -
                    """
         | 
| 248 | 
            -
                    texts_and_weights = self.parse_prompt_attention(prompt)
         | 
| 249 | 
            -
                    text_tokens, text_weights = [], []
         | 
| 250 | 
            -
                    for word, weight in texts_and_weights:
         | 
| 251 | 
            -
                        # tokenize and discard the starting and the ending token
         | 
| 252 | 
            -
                        token = clip_tokenizer(word, truncation=False).input_ids[1:-1]  # so that tokenize whatever length prompt
         | 
| 253 | 
            -
                        # the returned token is a 1d list: [320, 1125, 539, 320]
         | 
| 254 | 
            -
             | 
| 255 | 
            -
                        # merge the new tokens to the all tokens holder: text_tokens
         | 
| 256 | 
            -
                        text_tokens = [*text_tokens, *token]
         | 
| 257 | 
            -
             | 
| 258 | 
            -
                        # each token chunk will come with one weight, like ['red cat', 2.0]
         | 
| 259 | 
            -
                        # need to expand weight for each token.
         | 
| 260 | 
            -
                        chunk_weights = [weight] * len(token)
         | 
| 261 | 
            -
             | 
| 262 | 
            -
                        # append the weight back to the weight holder: text_weights
         | 
| 263 | 
            -
                        text_weights = [*text_weights, *chunk_weights]
         | 
| 264 | 
            -
                    return text_tokens, text_weights
         | 
| 265 | 
            -
             | 
| 266 | 
            -
                def group_tokens_and_weights(self, token_ids: list, weights: list, pad_last_block=False):
         | 
| 267 | 
            -
                    """
         | 
| 268 | 
            -
                    Produce tokens and weights in groups and pad the missing tokens
         | 
| 269 | 
            -
             | 
| 270 | 
            -
                    Args:
         | 
| 271 | 
            -
                        token_ids (list)
         | 
| 272 | 
            -
                            The token ids from tokenizer
         | 
| 273 | 
            -
                        weights (list)
         | 
| 274 | 
            -
                            The weights list from function get_prompts_tokens_with_weights
         | 
| 275 | 
            -
                        pad_last_block (bool)
         | 
| 276 | 
            -
                            Control if fill the last token list to 75 tokens with eos
         | 
| 277 | 
            -
                    Returns:
         | 
| 278 | 
            -
                        new_token_ids (2d list)
         | 
| 279 | 
            -
                        new_weights (2d list)
         | 
| 280 | 
            -
             | 
| 281 | 
            -
                    Example:
         | 
| 282 | 
            -
                        token_groups,weight_groups = group_tokens_and_weights(
         | 
| 283 | 
            -
                            token_ids = token_id_list
         | 
| 284 | 
            -
                            , weights = token_weight_list
         | 
| 285 | 
            -
                        )
         | 
| 286 | 
            -
                    """
         | 
| 287 | 
            -
                    bos, eos = 49406, 49407
         | 
| 288 | 
            -
             | 
| 289 | 
            -
                    # this will be a 2d list
         | 
| 290 | 
            -
                    new_token_ids = []
         | 
| 291 | 
            -
                    new_weights = []
         | 
| 292 | 
            -
                    while len(token_ids) >= 75:
         | 
| 293 | 
            -
                        # get the first 75 tokens
         | 
| 294 | 
            -
                        head_75_tokens = [token_ids.pop(0) for _ in range(75)]
         | 
| 295 | 
            -
                        head_75_weights = [weights.pop(0) for _ in range(75)]
         | 
| 296 | 
            -
             | 
| 297 | 
            -
                        # extract token ids and weights
         | 
| 298 | 
            -
                        temp_77_token_ids = [bos] + head_75_tokens + [eos]
         | 
| 299 | 
            -
                        temp_77_weights = [1.0] + head_75_weights + [1.0]
         | 
| 300 | 
            -
             | 
| 301 | 
            -
                        # add 77 token and weights chunk to the holder list
         | 
| 302 | 
            -
                        new_token_ids.append(temp_77_token_ids)
         | 
| 303 | 
            -
                        new_weights.append(temp_77_weights)
         | 
| 304 | 
            -
             | 
| 305 | 
            -
                    # padding the left
         | 
| 306 | 
            -
                    if len(token_ids) >= 0:
         | 
| 307 | 
            -
                        padding_len = 75 - len(token_ids) if pad_last_block else 0
         | 
| 308 | 
            -
             | 
| 309 | 
            -
                        temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
         | 
| 310 | 
            -
                        new_token_ids.append(temp_77_token_ids)
         | 
| 311 | 
            -
             | 
| 312 | 
            -
                        temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
         | 
| 313 | 
            -
                        new_weights.append(temp_77_weights)
         | 
| 314 | 
            -
             | 
| 315 | 
            -
                    return new_token_ids, new_weights
         | 
| 316 | 
            -
             | 
| 317 | 
            -
                def get_weighted_text_embeddings_sdxl(
         | 
| 318 | 
            -
                    self,
         | 
| 319 | 
            -
                    pipe: StableDiffusionXLPipeline,
         | 
| 320 | 
            -
                    prompt: str = "",
         | 
| 321 | 
            -
                    prompt_2: str = None,
         | 
| 322 | 
            -
                    neg_prompt: str = "",
         | 
| 323 | 
            -
                    neg_prompt_2: str = None,
         | 
| 324 | 
            -
                    prompt_embeds=None,
         | 
| 325 | 
            -
                    negative_prompt_embeds=None,
         | 
| 326 | 
            -
                    pooled_prompt_embeds=None,
         | 
| 327 | 
            -
                    negative_pooled_prompt_embeds=None,
         | 
| 328 | 
            -
                    extra_emb=None,
         | 
| 329 | 
            -
                    extra_emb_alpha=0.6,
         | 
| 330 | 
            -
                ):
         | 
| 331 | 
            -
                    """
         | 
| 332 | 
            -
                    This function can process long prompt with weights, no length limitation
         | 
| 333 | 
            -
                    for Stable Diffusion XL
         | 
| 334 | 
            -
             | 
| 335 | 
            -
                    Args:
         | 
| 336 | 
            -
                        pipe (StableDiffusionPipeline)
         | 
| 337 | 
            -
                        prompt (str)
         | 
| 338 | 
            -
                        prompt_2 (str)
         | 
| 339 | 
            -
                        neg_prompt (str)
         | 
| 340 | 
            -
                        neg_prompt_2 (str)
         | 
| 341 | 
            -
                    Returns:
         | 
| 342 | 
            -
                        prompt_embeds (torch.Tensor)
         | 
| 343 | 
            -
                        neg_prompt_embeds (torch.Tensor)
         | 
| 344 | 
            -
                    """
         | 
| 345 | 
            -
                    # 
         | 
| 346 | 
            -
                    if prompt_embeds is not None and \
         | 
| 347 | 
            -
                        negative_prompt_embeds is not None and \
         | 
| 348 | 
            -
                        pooled_prompt_embeds is not None and \
         | 
| 349 | 
            -
                        negative_pooled_prompt_embeds is not None:
         | 
| 350 | 
            -
                        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         | 
| 351 | 
            -
             | 
| 352 | 
            -
                    if prompt_2:
         | 
| 353 | 
            -
                        prompt = f"{prompt} {prompt_2}"
         | 
| 354 | 
            -
             | 
| 355 | 
            -
                    if neg_prompt_2:
         | 
| 356 | 
            -
                        neg_prompt = f"{neg_prompt} {neg_prompt_2}"
         | 
| 357 | 
            -
             | 
| 358 | 
            -
                    eos = pipe.tokenizer.eos_token_id
         | 
| 359 | 
            -
             | 
| 360 | 
            -
                    # tokenizer 1
         | 
| 361 | 
            -
                    prompt_tokens, prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
         | 
| 362 | 
            -
                    neg_prompt_tokens, neg_prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
         | 
| 363 | 
            -
             | 
| 364 | 
            -
                    # tokenizer 2
         | 
| 365 | 
            -
                    # prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt)
         | 
| 366 | 
            -
                    # neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt)
         | 
| 367 | 
            -
                    # tokenizer 2 遇到 !! !!!! 等多感叹号和tokenizer 1的效果不一致
         | 
| 368 | 
            -
                    prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
         | 
| 369 | 
            -
                    neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
         | 
| 370 | 
            -
             | 
| 371 | 
            -
                    # padding the shorter one for prompt set 1
         | 
| 372 | 
            -
                    prompt_token_len = len(prompt_tokens)
         | 
| 373 | 
            -
                    neg_prompt_token_len = len(neg_prompt_tokens)
         | 
| 374 | 
            -
             | 
| 375 | 
            -
                    if prompt_token_len > neg_prompt_token_len:
         | 
| 376 | 
            -
                        # padding the neg_prompt with eos token
         | 
| 377 | 
            -
                        neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
         | 
| 378 | 
            -
                        neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
         | 
| 379 | 
            -
                    else:
         | 
| 380 | 
            -
                        # padding the prompt
         | 
| 381 | 
            -
                        prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
         | 
| 382 | 
            -
                        prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
         | 
| 383 | 
            -
             | 
| 384 | 
            -
                    # padding the shorter one for token set 2
         | 
| 385 | 
            -
                    prompt_token_len_2 = len(prompt_tokens_2)
         | 
| 386 | 
            -
                    neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
         | 
| 387 | 
            -
             | 
| 388 | 
            -
                    if prompt_token_len_2 > neg_prompt_token_len_2:
         | 
| 389 | 
            -
                        # padding the neg_prompt with eos token
         | 
| 390 | 
            -
                        neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
         | 
| 391 | 
            -
                        neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
         | 
| 392 | 
            -
                    else:
         | 
| 393 | 
            -
                        # padding the prompt
         | 
| 394 | 
            -
                        prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
         | 
| 395 | 
            -
                        prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
         | 
| 396 | 
            -
             | 
| 397 | 
            -
                    embeds = []
         | 
| 398 | 
            -
                    neg_embeds = []
         | 
| 399 | 
            -
             | 
| 400 | 
            -
                    prompt_token_groups, prompt_weight_groups = self.group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())
         | 
| 401 | 
            -
             | 
| 402 | 
            -
                    neg_prompt_token_groups, neg_prompt_weight_groups = self.group_tokens_and_weights(
         | 
| 403 | 
            -
                        neg_prompt_tokens.copy(), neg_prompt_weights.copy()
         | 
| 404 | 
            -
                    )
         | 
| 405 | 
            -
             | 
| 406 | 
            -
                    prompt_token_groups_2, prompt_weight_groups_2 = self.group_tokens_and_weights(
         | 
| 407 | 
            -
                        prompt_tokens_2.copy(), prompt_weights_2.copy()
         | 
| 408 | 
            -
                    )
         | 
| 409 | 
            -
             | 
| 410 | 
            -
                    neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = self.group_tokens_and_weights(
         | 
| 411 | 
            -
                        neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
         | 
| 412 | 
            -
                    )
         | 
| 413 | 
            -
             | 
| 414 | 
            -
                    # get prompt embeddings one by one is not working.
         | 
| 415 | 
            -
                    for i in range(len(prompt_token_groups)):
         | 
| 416 | 
            -
                        # get positive prompt embeddings with weights
         | 
| 417 | 
            -
                        token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
         | 
| 418 | 
            -
                        weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
         | 
| 419 | 
            -
             | 
| 420 | 
            -
                        token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
         | 
| 421 | 
            -
             | 
| 422 | 
            -
                        # use first text encoder
         | 
| 423 | 
            -
                        prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True)
         | 
| 424 | 
            -
                        prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
         | 
| 425 | 
            -
             | 
| 426 | 
            -
                        # use second text encoder
         | 
| 427 | 
            -
                        prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True)
         | 
| 428 | 
            -
                        prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
         | 
| 429 | 
            -
                        pooled_prompt_embeds = prompt_embeds_2[0]
         | 
| 430 | 
            -
             | 
| 431 | 
            -
                        prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
         | 
| 432 | 
            -
                        token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
         | 
| 433 | 
            -
             | 
| 434 | 
            -
                        for j in range(len(weight_tensor)):
         | 
| 435 | 
            -
                            if weight_tensor[j] != 1.0:
         | 
| 436 | 
            -
                                token_embedding[j] = (
         | 
| 437 | 
            -
                                    token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
         | 
| 438 | 
            -
                                )
         | 
| 439 | 
            -
             | 
| 440 | 
            -
                        token_embedding = token_embedding.unsqueeze(0)
         | 
| 441 | 
            -
                        embeds.append(token_embedding)
         | 
| 442 | 
            -
             | 
| 443 | 
            -
                        # get negative prompt embeddings with weights
         | 
| 444 | 
            -
                        neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
         | 
| 445 | 
            -
                        neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
         | 
| 446 | 
            -
                        neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
         | 
| 447 | 
            -
             | 
| 448 | 
            -
                        # use first text encoder
         | 
| 449 | 
            -
                        neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True)
         | 
| 450 | 
            -
                        neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
         | 
| 451 | 
            -
             | 
| 452 | 
            -
                        # use second text encoder
         | 
| 453 | 
            -
                        neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True)
         | 
| 454 | 
            -
                        neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
         | 
| 455 | 
            -
                        negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
         | 
| 456 | 
            -
             | 
| 457 | 
            -
                        neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
         | 
| 458 | 
            -
                        neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
         | 
| 459 | 
            -
             | 
| 460 | 
            -
                        for z in range(len(neg_weight_tensor)):
         | 
| 461 | 
            -
                            if neg_weight_tensor[z] != 1.0:
         | 
| 462 | 
            -
                                neg_token_embedding[z] = (
         | 
| 463 | 
            -
                                    neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
         | 
| 464 | 
            -
                                )
         | 
| 465 | 
            -
             | 
| 466 | 
            -
                        neg_token_embedding = neg_token_embedding.unsqueeze(0)
         | 
| 467 | 
            -
                        neg_embeds.append(neg_token_embedding)
         | 
| 468 | 
            -
             | 
| 469 | 
            -
                    prompt_embeds = torch.cat(embeds, dim=1)
         | 
| 470 | 
            -
                    negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
         | 
| 471 | 
            -
             | 
| 472 | 
            -
                    if extra_emb is not None:
         | 
| 473 | 
            -
                        extra_emb = extra_emb.to(prompt_embeds.device, dtype=prompt_embeds.dtype) * extra_emb_alpha
         | 
| 474 | 
            -
                        prompt_embeds = torch.cat([prompt_embeds, extra_emb], 1)
         | 
| 475 | 
            -
                        negative_prompt_embeds = torch.cat([negative_prompt_embeds, torch.zeros_like(extra_emb)], 1)
         | 
| 476 | 
            -
                        print(f'fix prompt_embeds, extra_emb_alpha={extra_emb_alpha}')
         | 
| 477 | 
            -
             | 
| 478 | 
            -
                    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         | 
| 479 | 
            -
             | 
| 480 | 
            -
                def get_prompt_embeds(self, *args, **kwargs):
         | 
| 481 | 
            -
                    prompt_embeds, negative_prompt_embeds, _, _ = self.get_weighted_text_embeddings_sdxl(*args, **kwargs)
         | 
| 482 | 
            -
                    prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         | 
| 483 | 
            -
                    return prompt_embeds
         | 
| 484 | 
            -
             | 
| 485 |  | 
| 486 | 
            -
             | 
|  | |
|  | |
|  | |
| 487 |  | 
| 488 | 
            -
                 | 
| 489 | 
            -
             | 
| 490 | 
            -
             | 
| 491 | 
            -
             | 
| 492 | 
            -
             | 
| 493 | 
            -
             | 
| 494 | 
            -
             | 
| 495 | 
            -
             | 
| 496 | 
            -
             | 
| 497 | 
            -
                            from packaging import version
         | 
| 498 | 
            -
             | 
| 499 | 
            -
                            xformers_version = version.parse(xformers.__version__)
         | 
| 500 | 
            -
                            if xformers_version == version.parse("0.0.16"):
         | 
| 501 | 
            -
                                logger.warn(
         | 
| 502 | 
            -
                                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
         | 
| 503 | 
            -
                                )
         | 
| 504 | 
            -
                            self.enable_xformers_memory_efficient_attention()
         | 
| 505 | 
            -
                        else:
         | 
| 506 | 
            -
                            raise ValueError("xformers is not available. Make sure it is installed correctly")
         | 
| 507 |  | 
| 508 | 
            -
                 | 
| 509 | 
            -
                     | 
| 510 | 
            -
                     | 
|  | |
| 511 |  | 
| 512 | 
            -
             | 
| 513 |  | 
| 514 | 
            -
                     | 
| 515 | 
            -
                         | 
| 516 | 
            -
                        depth=4,
         | 
| 517 | 
            -
                        dim_head=64,
         | 
| 518 | 
            -
                        heads=20,
         | 
| 519 | 
            -
                        num_queries=num_tokens,
         | 
| 520 | 
            -
                        embedding_dim=image_emb_dim,
         | 
| 521 | 
            -
                        output_dim=self.unet.config.cross_attention_dim,
         | 
| 522 | 
            -
                        ff_mult=4,
         | 
| 523 | 
            -
                    )
         | 
| 524 | 
            -
             | 
| 525 | 
            -
                    image_proj_model.eval()
         | 
| 526 |  | 
| 527 | 
            -
                     | 
| 528 | 
            -
                     | 
| 529 | 
            -
                    if 'image_proj' in state_dict:
         | 
| 530 | 
            -
                        state_dict = state_dict["image_proj"]
         | 
| 531 | 
            -
                    self.image_proj_model.load_state_dict(state_dict)
         | 
| 532 |  | 
| 533 | 
            -
                     | 
| 534 |  | 
| 535 | 
            -
                 | 
| 536 | 
            -
                    
         | 
| 537 | 
            -
                     | 
| 538 | 
            -
                     | 
| 539 | 
            -
                     | 
| 540 | 
            -
             | 
| 541 | 
            -
             | 
| 542 | 
            -
             | 
| 543 | 
            -
             | 
| 544 | 
            -
             | 
| 545 | 
            -
             | 
| 546 | 
            -
             | 
| 547 | 
            -
             | 
| 548 | 
            -
                            hidden_size = unet.config.block_out_channels[block_id]
         | 
| 549 | 
            -
                        if cross_attention_dim is None:
         | 
| 550 | 
            -
                            attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
         | 
| 551 | 
            -
                        else:
         | 
| 552 | 
            -
                            attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, 
         | 
| 553 | 
            -
                                                               cross_attention_dim=cross_attention_dim, 
         | 
| 554 | 
            -
                                                               scale=scale,
         | 
| 555 | 
            -
                                                               num_tokens=num_tokens).to(unet.device, dtype=unet.dtype)
         | 
| 556 | 
            -
                    unet.set_attn_processor(attn_procs)
         | 
| 557 | 
            -
                    
         | 
| 558 | 
            -
                    state_dict = torch.load(model_ckpt, map_location="cpu")
         | 
| 559 | 
            -
                    ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
         | 
| 560 | 
            -
                    if 'ip_adapter' in state_dict:
         | 
| 561 | 
            -
                        state_dict = state_dict['ip_adapter']
         | 
| 562 | 
            -
                    ip_layers.load_state_dict(state_dict)
         | 
| 563 |  | 
| 564 | 
            -
                 | 
| 565 | 
            -
             | 
| 566 | 
            -
                     | 
| 567 | 
            -
             | 
| 568 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 569 |  | 
| 570 | 
            -
             | 
| 571 | 
            -
             | 
| 572 | 
            -
                    if isinstance(prompt_image_emb, torch.Tensor):
         | 
| 573 | 
            -
                        prompt_image_emb = prompt_image_emb.clone().detach()
         | 
| 574 | 
            -
                    else:
         | 
| 575 | 
            -
                        prompt_image_emb = torch.tensor(prompt_image_emb)
         | 
| 576 | 
            -
                        
         | 
| 577 | 
            -
                    prompt_image_emb = prompt_image_emb.to(device=device, dtype=dtype)
         | 
| 578 | 
            -
                    prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
         | 
| 579 | 
            -
                    
         | 
| 580 | 
            -
                    if do_classifier_free_guidance:
         | 
| 581 | 
            -
                        prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
         | 
| 582 | 
            -
                    else:
         | 
| 583 | 
            -
                        prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
         | 
| 584 | 
            -
                    
         | 
| 585 | 
            -
                    prompt_image_emb = self.image_proj_model(prompt_image_emb)
         | 
| 586 | 
            -
                    return prompt_image_emb
         | 
| 587 |  | 
| 588 | 
            -
             | 
| 589 | 
            -
             | 
| 590 | 
            -
             | 
| 591 | 
            -
             | 
| 592 | 
            -
             | 
| 593 | 
            -
             | 
| 594 | 
            -
             | 
| 595 | 
            -
                    height: Optional[int] = None,
         | 
| 596 | 
            -
                    width: Optional[int] = None,
         | 
| 597 | 
            -
                    num_inference_steps: int = 50,
         | 
| 598 | 
            -
                    guidance_scale: float = 5.0,
         | 
| 599 | 
            -
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 600 | 
            -
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         | 
| 601 | 
            -
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 602 | 
            -
                    eta: float = 0.0,
         | 
| 603 | 
            -
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 604 | 
            -
                    latents: Optional[torch.FloatTensor] = None,
         | 
| 605 | 
            -
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 606 | 
            -
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 607 | 
            -
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 608 | 
            -
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 609 | 
            -
                    image_embeds: Optional[torch.FloatTensor] = None,
         | 
| 610 | 
            -
                    output_type: Optional[str] = "pil",
         | 
| 611 | 
            -
                    return_dict: bool = True,
         | 
| 612 | 
            -
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 613 | 
            -
                    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
         | 
| 614 | 
            -
                    guess_mode: bool = False,
         | 
| 615 | 
            -
                    control_guidance_start: Union[float, List[float]] = 0.0,
         | 
| 616 | 
            -
                    control_guidance_end: Union[float, List[float]] = 1.0,
         | 
| 617 | 
            -
                    original_size: Tuple[int, int] = None,
         | 
| 618 | 
            -
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         | 
| 619 | 
            -
                    target_size: Tuple[int, int] = None,
         | 
| 620 | 
            -
                    negative_original_size: Optional[Tuple[int, int]] = None,
         | 
| 621 | 
            -
                    negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
         | 
| 622 | 
            -
                    negative_target_size: Optional[Tuple[int, int]] = None,
         | 
| 623 | 
            -
                    clip_skip: Optional[int] = None,
         | 
| 624 | 
            -
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         | 
| 625 | 
            -
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         | 
| 626 | 
            -
                    control_mask = None,
         | 
| 627 | 
            -
                    **kwargs,
         | 
| 628 | 
            -
                ):
         | 
| 629 | 
            -
                    r"""
         | 
| 630 | 
            -
                    The call function to the pipeline for generation.
         | 
| 631 |  | 
| 632 | 
            -
             | 
| 633 | 
            -
             | 
| 634 | 
            -
             | 
| 635 | 
            -
             | 
| 636 | 
            -
             | 
| 637 | 
            -
             | 
| 638 | 
            -
             | 
| 639 | 
            -
             | 
| 640 | 
            -
             | 
| 641 | 
            -
             | 
| 642 | 
            -
             | 
| 643 | 
            -
             | 
| 644 | 
            -
             | 
| 645 | 
            -
             | 
| 646 | 
            -
             | 
| 647 | 
            -
             | 
| 648 | 
            -
             | 
| 649 | 
            -
                            and checkpoints that are not specifically fine-tuned on low resolutions.
         | 
| 650 | 
            -
                        width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
         | 
| 651 | 
            -
                            The width in pixels of the generated image. Anything below 512 pixels won't work well for
         | 
| 652 | 
            -
                            [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
         | 
| 653 | 
            -
                            and checkpoints that are not specifically fine-tuned on low resolutions.
         | 
| 654 | 
            -
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 655 | 
            -
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 656 | 
            -
                            expense of slower inference.
         | 
| 657 | 
            -
                        guidance_scale (`float`, *optional*, defaults to 5.0):
         | 
| 658 | 
            -
                            A higher guidance scale value encourages the model to generate images closely linked to the text
         | 
| 659 | 
            -
                            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
         | 
| 660 | 
            -
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 661 | 
            -
                            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
         | 
| 662 | 
            -
                            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
         | 
| 663 | 
            -
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 664 | 
            -
                            The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
         | 
| 665 | 
            -
                            and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
         | 
| 666 | 
            -
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 667 | 
            -
                            The number of images to generate per prompt.
         | 
| 668 | 
            -
                        eta (`float`, *optional*, defaults to 0.0):
         | 
| 669 | 
            -
                            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
         | 
| 670 | 
            -
                            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
         | 
| 671 | 
            -
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 672 | 
            -
                            A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
         | 
| 673 | 
            -
                            generation deterministic.
         | 
| 674 | 
            -
                        latents (`torch.FloatTensor`, *optional*):
         | 
| 675 | 
            -
                            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 676 | 
            -
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 677 | 
            -
                            tensor is generated by sampling using the supplied random `generator`.
         | 
| 678 | 
            -
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 679 | 
            -
                            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
         | 
| 680 | 
            -
                            provided, text embeddings are generated from the `prompt` input argument.
         | 
| 681 | 
            -
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 682 | 
            -
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
         | 
| 683 | 
            -
                            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
         | 
| 684 | 
            -
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 685 | 
            -
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
         | 
| 686 | 
            -
                            not provided, pooled text embeddings are generated from `prompt` input argument.
         | 
| 687 | 
            -
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 688 | 
            -
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
         | 
| 689 | 
            -
                            weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
         | 
| 690 | 
            -
                            argument.
         | 
| 691 | 
            -
                        image_embeds (`torch.FloatTensor`, *optional*):
         | 
| 692 | 
            -
                            Pre-generated image embeddings.
         | 
| 693 | 
            -
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 694 | 
            -
                            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
         | 
| 695 | 
            -
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 696 | 
            -
                            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
         | 
| 697 | 
            -
                            plain tuple.
         | 
| 698 | 
            -
                        cross_attention_kwargs (`dict`, *optional*):
         | 
| 699 | 
            -
                            A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
         | 
| 700 | 
            -
                            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 701 | 
            -
                        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
         | 
| 702 | 
            -
                            The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
         | 
| 703 | 
            -
                            to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
         | 
| 704 | 
            -
                            the corresponding scale as a list.
         | 
| 705 | 
            -
                        guess_mode (`bool`, *optional*, defaults to `False`):
         | 
| 706 | 
            -
                            The ControlNet encoder tries to recognize the content of the input image even if you remove all
         | 
| 707 | 
            -
                            prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
         | 
| 708 | 
            -
                        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
         | 
| 709 | 
            -
                            The percentage of total steps at which the ControlNet starts applying.
         | 
| 710 | 
            -
                        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
         | 
| 711 | 
            -
                            The percentage of total steps at which the ControlNet stops applying.
         | 
| 712 | 
            -
                        original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 713 | 
            -
                            If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
         | 
| 714 | 
            -
                            `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
         | 
| 715 | 
            -
                            explained in section 2.2 of
         | 
| 716 | 
            -
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 717 | 
            -
                        crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         | 
| 718 | 
            -
                            `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
         | 
| 719 | 
            -
                            `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
         | 
| 720 | 
            -
                            `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
         | 
| 721 | 
            -
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 722 | 
            -
                        target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 723 | 
            -
                            For most cases, `target_size` should be set to the desired height and width of the generated image. If
         | 
| 724 | 
            -
                            not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
         | 
| 725 | 
            -
                            section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 726 | 
            -
                        negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 727 | 
            -
                            To negatively condition the generation process based on a specific image resolution. Part of SDXL's
         | 
| 728 | 
            -
                            micro-conditioning as explained in section 2.2 of
         | 
| 729 | 
            -
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 730 | 
            -
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 731 | 
            -
                        negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         | 
| 732 | 
            -
                            To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
         | 
| 733 | 
            -
                            micro-conditioning as explained in section 2.2 of
         | 
| 734 | 
            -
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 735 | 
            -
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 736 | 
            -
                        negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 737 | 
            -
                            To negatively condition the generation process based on a target image resolution. It should be as same
         | 
| 738 | 
            -
                            as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
         | 
| 739 | 
            -
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 740 | 
            -
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 741 | 
            -
                        clip_skip (`int`, *optional*):
         | 
| 742 | 
            -
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         | 
| 743 | 
            -
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         | 
| 744 | 
            -
                        callback_on_step_end (`Callable`, *optional*):
         | 
| 745 | 
            -
                            A function that calls at the end of each denoising steps during the inference. The function is called
         | 
| 746 | 
            -
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         | 
| 747 | 
            -
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         | 
| 748 | 
            -
                            `callback_on_step_end_tensor_inputs`.
         | 
| 749 | 
            -
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         | 
| 750 | 
            -
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         | 
| 751 | 
            -
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         | 
| 752 | 
            -
                            `._callback_tensor_inputs` attribute of your pipeine class.
         | 
| 753 |  | 
| 754 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 755 |  | 
| 756 | 
            -
             | 
| 757 | 
            -
             | 
| 758 | 
            -
             | 
| 759 | 
            -
             | 
| 760 | 
            -
                    """
         | 
| 761 | 
            -
                    lpw = LongPromptWeight()
         | 
| 762 |  | 
| 763 | 
            -
             | 
| 764 | 
            -
             | 
|  | |
| 765 |  | 
| 766 | 
            -
             | 
| 767 | 
            -
             | 
| 768 | 
            -
             | 
| 769 | 
            -
             | 
| 770 | 
            -
             | 
| 771 | 
            -
             | 
| 772 | 
            -
             | 
| 773 | 
            -
             | 
| 774 | 
            -
             | 
| 775 | 
            -
             | 
| 776 | 
            -
                             | 
| 777 | 
            -
                         | 
| 778 | 
            -
             | 
| 779 | 
            -
             | 
| 780 | 
            -
             | 
| 781 | 
            -
             | 
| 782 | 
            -
             | 
| 783 | 
            -
                         | 
| 784 | 
            -
             | 
| 785 | 
            -
             | 
| 786 | 
            -
             | 
| 787 | 
            -
                         | 
| 788 | 
            -
                         | 
| 789 | 
            -
             | 
| 790 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 791 | 
             
                        )
         | 
| 792 | 
            -
             | 
| 793 | 
            -
             | 
| 794 | 
            -
             | 
| 795 | 
            -
             | 
| 796 | 
            -
             | 
| 797 | 
            -
             | 
| 798 | 
            -
                        callback_steps,
         | 
| 799 | 
            -
                        negative_prompt,
         | 
| 800 | 
            -
                        negative_prompt_2,
         | 
| 801 | 
            -
                        prompt_embeds,
         | 
| 802 | 
            -
                        negative_prompt_embeds,
         | 
| 803 | 
            -
                        pooled_prompt_embeds,
         | 
| 804 | 
            -
                        negative_pooled_prompt_embeds,
         | 
| 805 | 
            -
                        controlnet_conditioning_scale,
         | 
| 806 | 
            -
                        control_guidance_start,
         | 
| 807 | 
            -
                        control_guidance_end,
         | 
| 808 | 
            -
                        callback_on_step_end_tensor_inputs,
         | 
| 809 | 
            -
                    )
         | 
| 810 | 
            -
             | 
| 811 | 
            -
                    self._guidance_scale = guidance_scale
         | 
| 812 | 
            -
                    self._clip_skip = clip_skip
         | 
| 813 | 
            -
                    self._cross_attention_kwargs = cross_attention_kwargs
         | 
| 814 | 
            -
             | 
| 815 | 
            -
                    # 2. Define call parameters
         | 
| 816 | 
            -
                    if prompt is not None and isinstance(prompt, str):
         | 
| 817 | 
            -
                        batch_size = 1
         | 
| 818 | 
            -
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 819 | 
            -
                        batch_size = len(prompt)
         | 
| 820 | 
            -
                    else:
         | 
| 821 | 
            -
                        batch_size = prompt_embeds.shape[0]
         | 
| 822 | 
            -
             | 
| 823 | 
            -
                    device = self._execution_device
         | 
| 824 | 
            -
             | 
| 825 | 
            -
                    if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
         | 
| 826 | 
            -
                        controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
         | 
| 827 | 
            -
             | 
| 828 | 
            -
                    global_pool_conditions = (
         | 
| 829 | 
            -
                        controlnet.config.global_pool_conditions
         | 
| 830 | 
            -
                        if isinstance(controlnet, ControlNetModel)
         | 
| 831 | 
            -
                        else controlnet.nets[0].config.global_pool_conditions
         | 
| 832 | 
            -
                    )
         | 
| 833 | 
            -
                    guess_mode = guess_mode or global_pool_conditions
         | 
| 834 | 
            -
             | 
| 835 | 
            -
                    # 3.1 Encode input prompt
         | 
| 836 | 
            -
                    (
         | 
| 837 | 
            -
                        prompt_embeds,
         | 
| 838 | 
            -
                        negative_prompt_embeds,
         | 
| 839 | 
            -
                        pooled_prompt_embeds,
         | 
| 840 | 
            -
                        negative_pooled_prompt_embeds,
         | 
| 841 | 
            -
                    ) = lpw.get_weighted_text_embeddings_sdxl(
         | 
| 842 | 
            -
                        pipe=self, 
         | 
| 843 | 
            -
                        prompt=prompt, 
         | 
| 844 | 
            -
                        neg_prompt=negative_prompt,
         | 
| 845 | 
            -
                        prompt_embeds=prompt_embeds,
         | 
| 846 | 
            -
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 847 | 
            -
                        pooled_prompt_embeds=pooled_prompt_embeds,
         | 
| 848 | 
            -
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         | 
| 849 | 
            -
                    )
         | 
| 850 | 
            -
                    
         | 
| 851 | 
            -
                    # 3.2 Encode image prompt
         | 
| 852 | 
            -
                    prompt_image_emb = self._encode_prompt_image_emb(image_embeds, 
         | 
| 853 | 
            -
                                                                     device,
         | 
| 854 | 
            -
                                                                     self.unet.dtype,
         | 
| 855 | 
            -
                                                                     self.do_classifier_free_guidance)
         | 
| 856 | 
            -
                    
         | 
| 857 | 
            -
                    # 4. Prepare image
         | 
| 858 | 
            -
                    if isinstance(controlnet, ControlNetModel):
         | 
| 859 | 
            -
                        image = self.prepare_image(
         | 
| 860 | 
            -
                            image=image,
         | 
| 861 | 
            -
                            width=width,
         | 
| 862 | 
            -
                            height=height,
         | 
| 863 | 
            -
                            batch_size=batch_size * num_images_per_prompt,
         | 
| 864 | 
            -
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 865 | 
            -
                            device=device,
         | 
| 866 | 
            -
                            dtype=controlnet.dtype,
         | 
| 867 | 
            -
                            do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 868 | 
            -
                            guess_mode=guess_mode,
         | 
| 869 | 
             
                        )
         | 
| 870 | 
            -
                         | 
| 871 | 
            -
             | 
| 872 | 
            -
             | 
| 873 | 
            -
             | 
| 874 | 
            -
             | 
| 875 | 
            -
             | 
| 876 | 
            -
                                image=image_,
         | 
| 877 | 
            -
                                width=width,
         | 
| 878 | 
            -
                                height=height,
         | 
| 879 | 
            -
                                batch_size=batch_size * num_images_per_prompt,
         | 
| 880 | 
            -
                                num_images_per_prompt=num_images_per_prompt,
         | 
| 881 | 
            -
                                device=device,
         | 
| 882 | 
            -
                                dtype=controlnet.dtype,
         | 
| 883 | 
            -
                                do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 884 | 
            -
                                guess_mode=guess_mode,
         | 
| 885 | 
             
                            )
         | 
| 886 | 
            -
             | 
| 887 | 
            -
             | 
| 888 | 
            -
             | 
| 889 | 
            -
             | 
| 890 | 
            -
             | 
| 891 | 
            -
             | 
| 892 | 
            -
                        assert False
         | 
| 893 | 
            -
             | 
| 894 | 
            -
                    # 4.1 Region control
         | 
| 895 | 
            -
                    if control_mask is not None:
         | 
| 896 | 
            -
                        mask_weight_image = control_mask
         | 
| 897 | 
            -
                        mask_weight_image = np.array(mask_weight_image)
         | 
| 898 | 
            -
                        mask_weight_image_tensor = torch.from_numpy(mask_weight_image).to(device=device, dtype=prompt_embeds.dtype)
         | 
| 899 | 
            -
                        mask_weight_image_tensor = mask_weight_image_tensor[:, :, 0] / 255.
         | 
| 900 | 
            -
                        mask_weight_image_tensor = mask_weight_image_tensor[None, None]
         | 
| 901 | 
            -
                        h, w = mask_weight_image_tensor.shape[-2:]
         | 
| 902 | 
            -
                        control_mask_wight_image_list = []
         | 
| 903 | 
            -
                        for scale in [8, 8, 8, 16, 16, 16, 32, 32, 32]:
         | 
| 904 | 
            -
                            scale_mask_weight_image_tensor = F.interpolate(
         | 
| 905 | 
            -
                                mask_weight_image_tensor,(h // scale, w // scale), mode='bilinear')
         | 
| 906 | 
            -
                            control_mask_wight_image_list.append(scale_mask_weight_image_tensor)
         | 
| 907 | 
            -
                        region_mask = torch.from_numpy(np.array(control_mask)[:, :, 0]).to(self.unet.device, dtype=self.unet.dtype) / 255.
         | 
| 908 | 
            -
                        region_control.prompt_image_conditioning = [dict(region_mask=region_mask)]
         | 
| 909 | 
            -
                    else:
         | 
| 910 | 
            -
                        control_mask_wight_image_list = None
         | 
| 911 | 
            -
                        region_control.prompt_image_conditioning = [dict(region_mask=None)]
         | 
| 912 | 
            -
             | 
| 913 | 
            -
                    # 5. Prepare timesteps
         | 
| 914 | 
            -
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         | 
| 915 | 
            -
                    timesteps = self.scheduler.timesteps
         | 
| 916 | 
            -
                    self._num_timesteps = len(timesteps)
         | 
| 917 | 
            -
             | 
| 918 | 
            -
                    # 6. Prepare latent variables
         | 
| 919 | 
            -
                    num_channels_latents = self.unet.config.in_channels
         | 
| 920 | 
            -
                    latents = self.prepare_latents(
         | 
| 921 | 
            -
                        batch_size * num_images_per_prompt,
         | 
| 922 | 
            -
                        num_channels_latents,
         | 
| 923 | 
            -
                        height,
         | 
| 924 | 
            -
                        width,
         | 
| 925 | 
            -
                        prompt_embeds.dtype,
         | 
| 926 | 
            -
                        device,
         | 
| 927 | 
            -
                        generator,
         | 
| 928 | 
            -
                        latents,
         | 
| 929 | 
            -
                    )
         | 
| 930 | 
            -
             | 
| 931 | 
            -
                    # 6.5 Optionally get Guidance Scale Embedding
         | 
| 932 | 
            -
                    timestep_cond = None
         | 
| 933 | 
            -
                    if self.unet.config.time_cond_proj_dim is not None:
         | 
| 934 | 
            -
                        guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
         | 
| 935 | 
            -
                        timestep_cond = self.get_guidance_scale_embedding(
         | 
| 936 | 
            -
                            guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
         | 
| 937 | 
            -
                        ).to(device=device, dtype=latents.dtype)
         | 
| 938 | 
            -
             | 
| 939 | 
            -
                    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
| 940 | 
            -
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 941 | 
            -
             | 
| 942 | 
            -
                    # 7.1 Create tensor stating which controlnets to keep
         | 
| 943 | 
            -
                    controlnet_keep = []
         | 
| 944 | 
            -
                    for i in range(len(timesteps)):
         | 
| 945 | 
            -
                        keeps = [
         | 
| 946 | 
            -
                            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
         | 
| 947 | 
            -
                            for s, e in zip(control_guidance_start, control_guidance_end)
         | 
| 948 | 
            -
                        ]
         | 
| 949 | 
            -
                        controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
         | 
| 950 | 
            -
             | 
| 951 | 
            -
                    # 7.2 Prepare added time ids & embeddings
         | 
| 952 | 
            -
                    if isinstance(image, list):
         | 
| 953 | 
            -
                        original_size = original_size or image[0].shape[-2:]
         | 
| 954 | 
            -
                    else:
         | 
| 955 | 
            -
                        original_size = original_size or image.shape[-2:]
         | 
| 956 | 
            -
                    target_size = target_size or (height, width)
         | 
| 957 | 
            -
             | 
| 958 | 
            -
                    add_text_embeds = pooled_prompt_embeds
         | 
| 959 | 
            -
                    if self.text_encoder_2 is None:
         | 
| 960 | 
            -
                        text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
         | 
| 961 | 
            -
                    else:
         | 
| 962 | 
            -
                        text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
         | 
| 963 | 
            -
             | 
| 964 | 
            -
                    add_time_ids = self._get_add_time_ids(
         | 
| 965 | 
            -
                        original_size,
         | 
| 966 | 
            -
                        crops_coords_top_left,
         | 
| 967 | 
            -
                        target_size,
         | 
| 968 | 
            -
                        dtype=prompt_embeds.dtype,
         | 
| 969 | 
            -
                        text_encoder_projection_dim=text_encoder_projection_dim,
         | 
| 970 | 
            -
                    )
         | 
| 971 | 
            -
             | 
| 972 | 
            -
                    if negative_original_size is not None and negative_target_size is not None:
         | 
| 973 | 
            -
                        negative_add_time_ids = self._get_add_time_ids(
         | 
| 974 | 
            -
                            negative_original_size,
         | 
| 975 | 
            -
                            negative_crops_coords_top_left,
         | 
| 976 | 
            -
                            negative_target_size,
         | 
| 977 | 
            -
                            dtype=prompt_embeds.dtype,
         | 
| 978 | 
            -
                            text_encoder_projection_dim=text_encoder_projection_dim,
         | 
| 979 | 
            -
                        )
         | 
| 980 | 
            -
                    else:
         | 
| 981 | 
            -
                        negative_add_time_ids = add_time_ids
         | 
| 982 | 
            -
             | 
| 983 | 
            -
                    if self.do_classifier_free_guidance:
         | 
| 984 | 
            -
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         | 
| 985 | 
            -
                        add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
         | 
| 986 | 
            -
                        add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
         | 
| 987 | 
            -
             | 
| 988 | 
            -
                    prompt_embeds = prompt_embeds.to(device)
         | 
| 989 | 
            -
                    add_text_embeds = add_text_embeds.to(device)
         | 
| 990 | 
            -
                    add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
         | 
| 991 | 
            -
                    encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
         | 
| 992 | 
            -
             | 
| 993 | 
            -
                    # 8. Denoising loop
         | 
| 994 | 
            -
                    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
         | 
| 995 | 
            -
                    is_unet_compiled = is_compiled_module(self.unet)
         | 
| 996 | 
            -
                    is_controlnet_compiled = is_compiled_module(self.controlnet)
         | 
| 997 | 
            -
                    is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
         | 
| 998 | 
            -
                            
         | 
| 999 | 
            -
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 1000 | 
            -
                        for i, t in enumerate(timesteps):
         | 
| 1001 | 
            -
                            # Relevant thread:
         | 
| 1002 | 
            -
                            # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
         | 
| 1003 | 
            -
                            if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
         | 
| 1004 | 
            -
                                torch._inductor.cudagraph_mark_step_begin()
         | 
| 1005 | 
            -
                            # expand the latents if we are doing classifier free guidance
         | 
| 1006 | 
            -
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         | 
| 1007 | 
            -
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 1008 | 
            -
             | 
| 1009 | 
            -
                            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         | 
| 1010 | 
            -
             | 
| 1011 | 
            -
                            # controlnet(s) inference
         | 
| 1012 | 
            -
                            if guess_mode and self.do_classifier_free_guidance:
         | 
| 1013 | 
            -
                                # Infer ControlNet only for the conditional batch.
         | 
| 1014 | 
            -
                                control_model_input = latents
         | 
| 1015 | 
            -
                                control_model_input = self.scheduler.scale_model_input(control_model_input, t)
         | 
| 1016 | 
            -
                                controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
         | 
| 1017 | 
            -
                                controlnet_added_cond_kwargs = {
         | 
| 1018 | 
            -
                                    "text_embeds": add_text_embeds.chunk(2)[1],
         | 
| 1019 | 
            -
                                    "time_ids": add_time_ids.chunk(2)[1],
         | 
| 1020 | 
            -
                                }
         | 
| 1021 | 
            -
                            else:
         | 
| 1022 | 
            -
                                control_model_input = latent_model_input
         | 
| 1023 | 
            -
                                controlnet_prompt_embeds = prompt_embeds
         | 
| 1024 | 
            -
                                controlnet_added_cond_kwargs = added_cond_kwargs
         | 
| 1025 | 
            -
                            
         | 
| 1026 | 
            -
                            if isinstance(controlnet_keep[i], list):
         | 
| 1027 | 
            -
                                cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
         | 
| 1028 | 
            -
                            else:
         | 
| 1029 | 
            -
                                controlnet_cond_scale = controlnet_conditioning_scale
         | 
| 1030 | 
            -
                                if isinstance(controlnet_cond_scale, list):
         | 
| 1031 | 
            -
                                    controlnet_cond_scale = controlnet_cond_scale[0]
         | 
| 1032 | 
            -
                                cond_scale = controlnet_cond_scale * controlnet_keep[i]
         | 
| 1033 | 
            -
             | 
| 1034 | 
            -
                            down_block_res_samples, mid_block_res_sample = self.controlnet(
         | 
| 1035 | 
            -
                                control_model_input,
         | 
| 1036 | 
            -
                                t,
         | 
| 1037 | 
            -
                                encoder_hidden_states=prompt_image_emb,
         | 
| 1038 | 
            -
                                controlnet_cond=image,
         | 
| 1039 | 
            -
                                conditioning_scale=cond_scale,
         | 
| 1040 | 
            -
                                guess_mode=guess_mode,
         | 
| 1041 | 
            -
                                added_cond_kwargs=controlnet_added_cond_kwargs,
         | 
| 1042 | 
            -
                                return_dict=False,
         | 
| 1043 | 
             
                            )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1044 |  | 
| 1045 | 
            -
             | 
| 1046 | 
            -
                            if control_mask_wight_image_list is not None:
         | 
| 1047 | 
            -
                                down_block_res_samples = [
         | 
| 1048 | 
            -
                                    down_block_res_sample * mask_weight
         | 
| 1049 | 
            -
                                    for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
         | 
| 1050 | 
            -
                                ]
         | 
| 1051 | 
            -
                                mid_block_res_sample *= control_mask_wight_image_list[-1]
         | 
| 1052 | 
            -
             | 
| 1053 | 
            -
                            if guess_mode and self.do_classifier_free_guidance:
         | 
| 1054 | 
            -
                                # Infered ControlNet only for the conditional batch.
         | 
| 1055 | 
            -
                                # To apply the output of ControlNet to both the unconditional and conditional batches,
         | 
| 1056 | 
            -
                                # add 0 to the unconditional batch to keep it unchanged.
         | 
| 1057 | 
            -
                                down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
         | 
| 1058 | 
            -
                                mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
         | 
| 1059 | 
            -
             | 
| 1060 | 
            -
                            # predict the noise residual
         | 
| 1061 | 
            -
                            noise_pred = self.unet(
         | 
| 1062 | 
            -
                                latent_model_input,
         | 
| 1063 | 
            -
                                t,
         | 
| 1064 | 
            -
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 1065 | 
            -
                                timestep_cond=timestep_cond,
         | 
| 1066 | 
            -
                                cross_attention_kwargs=self.cross_attention_kwargs,
         | 
| 1067 | 
            -
                                down_block_additional_residuals=down_block_res_samples,
         | 
| 1068 | 
            -
                                mid_block_additional_residual=mid_block_res_sample,
         | 
| 1069 | 
            -
                                added_cond_kwargs=added_cond_kwargs,
         | 
| 1070 | 
            -
                                return_dict=False,
         | 
| 1071 | 
            -
                            )[0]
         | 
| 1072 | 
            -
             | 
| 1073 | 
            -
                            # perform guidance
         | 
| 1074 | 
            -
                            if self.do_classifier_free_guidance:
         | 
| 1075 | 
            -
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 1076 | 
            -
                                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 1077 | 
            -
             | 
| 1078 | 
            -
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 1079 | 
            -
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         | 
| 1080 | 
            -
             | 
| 1081 | 
            -
                            if callback_on_step_end is not None:
         | 
| 1082 | 
            -
                                callback_kwargs = {}
         | 
| 1083 | 
            -
                                for k in callback_on_step_end_tensor_inputs:
         | 
| 1084 | 
            -
                                    callback_kwargs[k] = locals()[k]
         | 
| 1085 | 
            -
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         | 
| 1086 | 
            -
             | 
| 1087 | 
            -
                                latents = callback_outputs.pop("latents", latents)
         | 
| 1088 | 
            -
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         | 
| 1089 | 
            -
                                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
         | 
| 1090 | 
            -
             | 
| 1091 | 
            -
                            # call the callback, if provided
         | 
| 1092 | 
            -
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 1093 | 
            -
                                progress_bar.update()
         | 
| 1094 | 
            -
                                if callback is not None and i % callback_steps == 0:
         | 
| 1095 | 
            -
                                    step_idx = i // getattr(self.scheduler, "order", 1)
         | 
| 1096 | 
            -
                                    callback(step_idx, t, latents)
         | 
| 1097 | 
            -
                    
         | 
| 1098 | 
            -
                    if not output_type == "latent":
         | 
| 1099 | 
            -
                        # make sure the VAE is in float32 mode, as it overflows in float16
         | 
| 1100 | 
            -
                        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         | 
| 1101 | 
            -
                        if needs_upcasting:
         | 
| 1102 | 
            -
                            self.upcast_vae()
         | 
| 1103 | 
            -
                            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         | 
| 1104 | 
            -
                        
         | 
| 1105 | 
            -
                        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
         | 
| 1106 | 
            -
             | 
| 1107 | 
            -
                        # cast back to fp16 if needed
         | 
| 1108 | 
            -
                        if needs_upcasting:
         | 
| 1109 | 
            -
                            self.vae.to(dtype=torch.float16)            
         | 
| 1110 | 
            -
                    else:
         | 
| 1111 | 
            -
                        image = latents
         | 
| 1112 | 
            -
             | 
| 1113 | 
            -
                    if not output_type == "latent":
         | 
| 1114 | 
            -
                        # apply watermark if available
         | 
| 1115 | 
            -
                        if self.watermark is not None:
         | 
| 1116 | 
            -
                            image = self.watermark.apply_watermark(image)
         | 
| 1117 | 
            -
             | 
| 1118 | 
            -
                        image = self.image_processor.postprocess(image, output_type=output_type)
         | 
| 1119 | 
            -
             | 
| 1120 | 
            -
                    # Offload all models
         | 
| 1121 | 
            -
                    self.maybe_free_model_hooks()
         | 
| 1122 | 
            -
             | 
| 1123 | 
            -
                    if not return_dict:
         | 
| 1124 | 
            -
                        return (image,)
         | 
| 1125 | 
            -
             | 
| 1126 | 
            -
                    return StableDiffusionXLPipelineOutput(images=image)
         | 
|  | |
| 1 | 
            +
            import os
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 2 | 
             
            import cv2
         | 
| 3 | 
             
            import math
         | 
|  | |
|  | |
|  | |
| 4 | 
             
            import torch
         | 
| 5 | 
            +
            import random
         | 
| 6 | 
            +
            import numpy as np
         | 
| 7 |  | 
| 8 | 
            +
            import PIL
         | 
| 9 | 
            +
            from PIL import Image
         | 
| 10 |  | 
| 11 | 
            +
            import diffusers
         | 
| 12 | 
            +
            from diffusers.utils import load_image
         | 
| 13 | 
             
            from diffusers.models import ControlNetModel
         | 
| 14 |  | 
| 15 | 
            +
            import insightface
         | 
| 16 | 
            +
            from insightface.app import FaceAnalysis
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 17 |  | 
| 18 | 
            +
            from style_template import styles
         | 
| 19 | 
            +
            from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline
         | 
|  | |
| 20 |  | 
| 21 | 
            +
            import spaces
         | 
| 22 | 
            +
            import gradio as gr
         | 
| 23 |  | 
| 24 | 
            +
            # global variable
         | 
| 25 | 
            +
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 26 | 
            +
            device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 27 | 
            +
            STYLE_NAMES = list(styles.keys())
         | 
| 28 | 
            +
            DEFAULT_STYLE_NAME = "Watercolor"
         | 
| 29 |  | 
| 30 | 
            +
            # download checkpoints
         | 
| 31 | 
            +
            from huggingface_hub import hf_hub_download
         | 
| 32 | 
            +
            hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
         | 
| 33 | 
            +
            hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
         | 
| 34 | 
            +
            hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
         | 
| 35 |  | 
| 36 | 
            +
            # Load face encoder
         | 
| 37 | 
            +
            app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
         | 
| 38 | 
            +
            app.prepare(ctx_id=0, det_size=(640, 640))
         | 
| 39 |  | 
| 40 | 
            +
            # Path to InstantID models
         | 
| 41 | 
            +
            face_adapter = f'./checkpoints/ip-adapter.bin'
         | 
| 42 | 
            +
            controlnet_path = f'./checkpoints/ControlNetModel'
         | 
|  | |
|  | |
|  | |
|  | |
| 43 |  | 
| 44 | 
            +
            # Load pipeline
         | 
| 45 | 
            +
            controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 46 |  | 
| 47 | 
            +
            base_model_path = 'GHArt/Unstable_Diffusers_YamerMIX_V9_xl_fp16'
         | 
|  | |
| 48 |  | 
| 49 | 
            +
            pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
         | 
| 50 | 
            +
                base_model_path,
         | 
| 51 | 
            +
                controlnet=controlnet,
         | 
| 52 | 
            +
                torch_dtype=torch.float16,
         | 
| 53 | 
            +
                safety_checker=None,
         | 
| 54 | 
            +
                feature_extractor=None,
         | 
| 55 | 
            +
            )
         | 
| 56 | 
            +
            pipe.cuda()
         | 
| 57 | 
            +
            pipe.load_ip_adapter_instantid(face_adapter)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
         | 
| 60 | 
            +
                if randomize_seed:
         | 
| 61 | 
            +
                    seed = random.randint(0, MAX_SEED)
         | 
| 62 | 
            +
                return seed
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            def swap_to_gallery(images):
         | 
| 65 | 
            +
                return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            def upload_example_to_gallery(images, prompt, style, negative_prompt):
         | 
| 68 | 
            +
                return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            def remove_back_to_files():
         | 
| 71 | 
            +
                return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            def remove_tips():
         | 
| 74 | 
            +
                return gr.update(visible=False)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            def get_example():
         | 
| 77 | 
            +
                case = [
         | 
| 78 | 
            +
                    [
         | 
| 79 | 
            +
                        ['./examples/yann-lecun_resize.jpg'],
         | 
| 80 | 
            +
                        "a man",
         | 
| 81 | 
            +
                        "Snow",
         | 
| 82 | 
            +
                        "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
         | 
| 83 | 
            +
                    ],
         | 
| 84 | 
            +
                    [
         | 
| 85 | 
            +
                        ['./examples/musk_resize.jpeg'],
         | 
| 86 | 
            +
                        "a man",
         | 
| 87 | 
            +
                        "Mars",
         | 
| 88 | 
            +
                        "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
         | 
| 89 | 
            +
                    ],
         | 
| 90 | 
            +
                    [
         | 
| 91 | 
            +
                        ['./examples/sam_resize.png'],
         | 
| 92 | 
            +
                        "a man",
         | 
| 93 | 
            +
                        "Jungle",
         | 
| 94 | 
            +
                        "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
         | 
| 95 | 
            +
                    ],
         | 
| 96 | 
            +
                    [
         | 
| 97 | 
            +
                        ['./examples/schmidhuber_resize.png'],
         | 
| 98 | 
            +
                        "a man",
         | 
| 99 | 
            +
                        "Neon",
         | 
| 100 | 
            +
                        "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
         | 
| 101 | 
            +
                    ],
         | 
| 102 | 
            +
                    [
         | 
| 103 | 
            +
                        ['./examples/kaifu_resize.png'],
         | 
| 104 | 
            +
                        "a man",
         | 
| 105 | 
            +
                        "Vibrant Color",
         | 
| 106 | 
            +
                        "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
         | 
| 107 | 
            +
                    ],
         | 
| 108 | 
            +
                ]
         | 
| 109 | 
            +
                return case
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            def convert_from_cv2_to_image(img: np.ndarray) -> Image:
         | 
| 112 | 
            +
                return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            def convert_from_image_to_cv2(img: Image) -> np.ndarray:
         | 
| 115 | 
            +
                return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
         | 
| 118 | 
            +
                stickwidth = 4
         | 
| 119 | 
            +
                limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
         | 
| 120 | 
            +
                kps = np.array(kps)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                w, h = image_pil.size
         | 
| 123 | 
            +
                out_img = np.zeros([h, w, 3])
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                for i in range(len(limbSeq)):
         | 
| 126 | 
            +
                    index = limbSeq[i]
         | 
| 127 | 
            +
                    color = color_list[index[0]]
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    x = kps[index][:, 0]
         | 
| 130 | 
            +
                    y = kps[index][:, 1]
         | 
| 131 | 
            +
                    length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
         | 
| 132 | 
            +
                    angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
         | 
| 133 | 
            +
                    polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
         | 
| 134 | 
            +
                    out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
         | 
| 135 | 
            +
                out_img = (out_img * 0.6).astype(np.uint8)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                for idx_kp, kp in enumerate(kps):
         | 
| 138 | 
            +
                    color = color_list[idx_kp]
         | 
| 139 | 
            +
                    x, y = kp
         | 
| 140 | 
            +
                    out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                out_img_pil = Image.fromarray(out_img.astype(np.uint8))
         | 
| 143 | 
            +
                return out_img_pil
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            def resize_img(input_image, max_side=1280, min_side=1024, size=None, 
         | 
| 146 | 
            +
                           pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64):
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    w, h = input_image.size
         | 
| 149 | 
            +
                    if size is not None:
         | 
| 150 | 
            +
                        w_resize_new, h_resize_new = size
         | 
| 151 | 
            +
                    else:
         | 
| 152 | 
            +
                        ratio = min_side / min(h, w)
         | 
| 153 | 
            +
                        w, h = round(ratio*w), round(ratio*h)
         | 
| 154 | 
            +
                        ratio = max_side / max(h, w)
         | 
| 155 | 
            +
                        input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
         | 
| 156 | 
            +
                        w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
         | 
| 157 | 
            +
                        h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
         | 
| 158 | 
            +
                    input_image = input_image.resize([w_resize_new, h_resize_new], mode)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    if pad_to_max_side:
         | 
| 161 | 
            +
                        res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
         | 
| 162 | 
            +
                        offset_x = (max_side - w_resize_new) // 2
         | 
| 163 | 
            +
                        offset_y = (max_side - h_resize_new) // 2
         | 
| 164 | 
            +
                        res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
         | 
| 165 | 
            +
                        input_image = Image.fromarray(res)
         | 
| 166 | 
            +
                    return input_image
         | 
| 167 | 
            +
             | 
| 168 | 
            +
            def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
         | 
| 169 | 
            +
                p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
         | 
| 170 | 
            +
                return p.replace("{prompt}", positive), n + ' ' + negative
         | 
| 171 | 
            +
             | 
| 172 | 
            +
            @spaces.GPU
         | 
| 173 | 
            +
            def generate_image(face_image, pose_image, prompt, negative_prompt, style_name, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                if face_image is None:
         | 
| 176 | 
            +
                    raise gr.Error(f"Cannot find any input face image! Please upload the face image")
         | 
| 177 |  | 
| 178 | 
            +
                if prompt is None:
         | 
| 179 | 
            +
                    prompt = "a person"
         | 
|  | |
| 180 |  | 
| 181 | 
            +
                # apply the style template
         | 
| 182 | 
            +
                prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 183 |  | 
| 184 | 
            +
                face_image = load_image(face_image[0])
         | 
| 185 | 
            +
                face_image = resize_img(face_image)
         | 
| 186 | 
            +
                face_image_cv2 = convert_from_image_to_cv2(face_image)
         | 
| 187 | 
            +
                height, width, _ = face_image_cv2.shape
         | 
| 188 |  | 
| 189 | 
            +
                # Extract face features
         | 
| 190 | 
            +
                face_info = app.get(face_image_cv2)
         | 
| 191 | 
            +
                
         | 
| 192 | 
            +
                if len(face_info) == 0:
         | 
| 193 | 
            +
                    raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
         | 
| 194 | 
            +
                
         | 
| 195 | 
            +
                face_info = face_info[-1]
         | 
| 196 | 
            +
                face_emb = face_info['embedding']
         | 
| 197 | 
            +
                face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 198 |  | 
| 199 | 
            +
                if pose_image is not None:
         | 
| 200 | 
            +
                    pose_image = load_image(pose_image[0])
         | 
| 201 | 
            +
                    pose_image = resize_img(pose_image)
         | 
| 202 | 
            +
                    pose_image_cv2 = convert_from_image_to_cv2(pose_image)
         | 
| 203 |  | 
| 204 | 
            +
                    face_info = app.get(pose_image_cv2)
         | 
| 205 |  | 
| 206 | 
            +
                    if len(face_info) == 0:
         | 
| 207 | 
            +
                        raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 208 |  | 
| 209 | 
            +
                    face_info = face_info[-1]
         | 
| 210 | 
            +
                    face_kps = draw_kps(pose_image, face_info['kps'])
         | 
|  | |
|  | |
|  | |
| 211 |  | 
| 212 | 
            +
                    width, height = face_kps.size
         | 
| 213 |  | 
| 214 | 
            +
                if enhance_face_region:
         | 
| 215 | 
            +
                    control_mask = np.zeros([height, width, 3])
         | 
| 216 | 
            +
                    x1, y1, x2, y2 = face_info['bbox']
         | 
| 217 | 
            +
                    x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
         | 
| 218 | 
            +
                    control_mask[y1:y2, x1:x2] = 255
         | 
| 219 | 
            +
                    control_mask = Image.fromarray(control_mask.astype(np.uint8))
         | 
| 220 | 
            +
                else:
         | 
| 221 | 
            +
                    control_mask = None
         | 
| 222 | 
            +
                
         | 
| 223 | 
            +
                generator = torch.Generator(device=device).manual_seed(seed)
         | 
| 224 | 
            +
                
         | 
| 225 | 
            +
                print("Start inference...")
         | 
| 226 | 
            +
                print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 227 |  | 
| 228 | 
            +
                pipe.set_ip_adapter_scale(adapter_strength_ratio)
         | 
| 229 | 
            +
                images = pipe(
         | 
| 230 | 
            +
                    prompt=prompt,
         | 
| 231 | 
            +
                    negative_prompt=negative_prompt,
         | 
| 232 | 
            +
                    image_embeds=face_emb,
         | 
| 233 | 
            +
                    image=face_kps,
         | 
| 234 | 
            +
                    control_mask=control_mask,
         | 
| 235 | 
            +
                    controlnet_conditioning_scale=float(identitynet_strength_ratio),
         | 
| 236 | 
            +
                    num_inference_steps=num_steps,
         | 
| 237 | 
            +
                    guidance_scale=guidance_scale,
         | 
| 238 | 
            +
                    height=height,
         | 
| 239 | 
            +
                    width=width,
         | 
| 240 | 
            +
                    generator=generator
         | 
| 241 | 
            +
                ).images
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                return images, gr.update(visible=True)
         | 
| 244 | 
            +
             | 
| 245 | 
            +
            ### Description
         | 
| 246 | 
            +
            title = r"""
         | 
| 247 | 
            +
            <h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
         | 
| 248 | 
            +
            """
         | 
| 249 |  | 
| 250 | 
            +
            description = r"""
         | 
| 251 | 
            +
            <b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 252 |  | 
| 253 | 
            +
            How to use:<br>
         | 
| 254 | 
            +
            1. Upload a person image. For multiple person images, we will only detect the biggest face. Make sure face is not too small and not significantly blocked or blurred.
         | 
| 255 | 
            +
            2. (Optionally) upload another person image as reference pose. If not uploaded, we will use the first person image to extract landmarks. If you use a cropped face at step1, it is recommeneded to upload it to extract a new pose.
         | 
| 256 | 
            +
            3. Enter a text prompt as done in normal text-to-image models.
         | 
| 257 | 
            +
            4. Click the <b>Submit</b> button to start customizing.
         | 
| 258 | 
            +
            5. Share your customizd photo with your friends, enjoy😊!
         | 
| 259 | 
            +
            """
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 260 |  | 
| 261 | 
            +
            article = r"""
         | 
| 262 | 
            +
            ---
         | 
| 263 | 
            +
            📝 **Citation**
         | 
| 264 | 
            +
            <br>
         | 
| 265 | 
            +
            If our work is helpful for your research or applications, please cite us via:
         | 
| 266 | 
            +
            ```bibtex
         | 
| 267 | 
            +
            @article{wang2024instantid,
         | 
| 268 | 
            +
              title={InstantID: Zero-shot Identity-Preserving Generation in Seconds},
         | 
| 269 | 
            +
              author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony},
         | 
| 270 | 
            +
              journal={arXiv preprint arXiv:2401.07519},
         | 
| 271 | 
            +
              year={2024}
         | 
| 272 | 
            +
            }
         | 
| 273 | 
            +
            ```
         | 
| 274 | 
            +
            📧 **Contact**
         | 
| 275 | 
            +
            <br>
         | 
| 276 | 
            +
            If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>.
         | 
| 277 | 
            +
            """
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 278 |  | 
| 279 | 
            +
            tips = r"""
         | 
| 280 | 
            +
            ### Usage tips of InstantID
         | 
| 281 | 
            +
            1. If you're unsatisfied with the similarity, increase the weight of controlnet_conditioning_scale (IdentityNet) and ip_adapter_scale (Adapter).
         | 
| 282 | 
            +
            2. If the generated image is over-saturated, decrease the ip_adapter_scale. If not work, decrease controlnet_conditioning_scale.
         | 
| 283 | 
            +
            3. If text control is not as expected, decrease ip_adapter_scale.
         | 
| 284 | 
            +
            4. Find a good base model always makes a difference.
         | 
| 285 | 
            +
            """
         | 
| 286 |  | 
| 287 | 
            +
            css = '''
         | 
| 288 | 
            +
            .gradio-container {width: 85% !important}
         | 
| 289 | 
            +
            '''
         | 
| 290 | 
            +
            with gr.Blocks(css=css) as demo:
         | 
|  | |
|  | |
| 291 |  | 
| 292 | 
            +
                # description
         | 
| 293 | 
            +
                gr.Markdown(title)
         | 
| 294 | 
            +
                gr.Markdown(description)
         | 
| 295 |  | 
| 296 | 
            +
                with gr.Row():
         | 
| 297 | 
            +
                    with gr.Column():
         | 
| 298 | 
            +
                        
         | 
| 299 | 
            +
                        # upload face image
         | 
| 300 | 
            +
                        face_files = gr.Files(
         | 
| 301 | 
            +
                                    label="Upload a photo of your face",
         | 
| 302 | 
            +
                                    file_types=["image"]
         | 
| 303 | 
            +
                                )
         | 
| 304 | 
            +
                        uploaded_faces = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
         | 
| 305 | 
            +
                        with gr.Column(visible=False) as clear_button_face:
         | 
| 306 | 
            +
                            remove_and_reupload_faces = gr.ClearButton(value="Remove and upload new ones", components=face_files, size="sm")
         | 
| 307 | 
            +
                        
         | 
| 308 | 
            +
                        # optional: upload a reference pose image
         | 
| 309 | 
            +
                        pose_files = gr.Files(
         | 
| 310 | 
            +
                                    label="Upload a reference pose image (optional)",
         | 
| 311 | 
            +
                                    file_types=["image"]
         | 
| 312 | 
            +
                                )
         | 
| 313 | 
            +
                        uploaded_poses = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
         | 
| 314 | 
            +
                        with gr.Column(visible=False) as clear_button_pose:
         | 
| 315 | 
            +
                            remove_and_reupload_poses = gr.ClearButton(value="Remove and upload new ones", components=pose_files, size="sm")
         | 
| 316 | 
            +
                        
         | 
| 317 | 
            +
                        # prompt
         | 
| 318 | 
            +
                        prompt = gr.Textbox(label="Prompt",
         | 
| 319 | 
            +
                                   info="Give simple prompt is enough to achieve good face fedility",
         | 
| 320 | 
            +
                                   placeholder="A photo of a person",
         | 
| 321 | 
            +
                                   value="")
         | 
| 322 | 
            +
                        
         | 
| 323 | 
            +
                        submit = gr.Button("Submit", variant="primary")
         | 
| 324 | 
            +
                        
         | 
| 325 | 
            +
                        style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
         | 
| 326 | 
            +
                        
         | 
| 327 | 
            +
                        # strength
         | 
| 328 | 
            +
                        identitynet_strength_ratio = gr.Slider(
         | 
| 329 | 
            +
                            label="IdentityNet strength (for fedility)",
         | 
| 330 | 
            +
                            minimum=0,
         | 
| 331 | 
            +
                            maximum=1.5,
         | 
| 332 | 
            +
                            step=0.05,
         | 
| 333 | 
            +
                            value=0.80,
         | 
| 334 | 
             
                        )
         | 
| 335 | 
            +
                        adapter_strength_ratio = gr.Slider(
         | 
| 336 | 
            +
                            label="Image adapter strength (for detail)",
         | 
| 337 | 
            +
                            minimum=0,
         | 
| 338 | 
            +
                            maximum=1.5,
         | 
| 339 | 
            +
                            step=0.05,
         | 
| 340 | 
            +
                            value=0.80,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 341 | 
             
                        )
         | 
| 342 | 
            +
                        
         | 
| 343 | 
            +
                        with gr.Accordion(open=False, label="Advanced Options"):
         | 
| 344 | 
            +
                            negative_prompt = gr.Textbox(
         | 
| 345 | 
            +
                                label="Negative Prompt", 
         | 
| 346 | 
            +
                                placeholder="low quality",
         | 
| 347 | 
            +
                                value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 348 | 
             
                            )
         | 
| 349 | 
            +
                            num_steps = gr.Slider( 
         | 
| 350 | 
            +
                                label="Number of sample steps",
         | 
| 351 | 
            +
                                minimum=20,
         | 
| 352 | 
            +
                                maximum=100,
         | 
| 353 | 
            +
                                step=1,
         | 
| 354 | 
            +
                                value=30,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 355 | 
             
                            )
         | 
| 356 | 
            +
                            guidance_scale = gr.Slider(
         | 
| 357 | 
            +
                                label="Guidance scale",
         | 
| 358 | 
            +
                                minimum=0.1,
         | 
| 359 | 
            +
                                maximum=10.0,
         | 
| 360 | 
            +
                                step=0.1,
         | 
| 361 | 
            +
                                value=5,
         | 
| 362 | 
            +
                            )
         | 
| 363 | 
            +
                            seed = gr.Slider(
         | 
| 364 | 
            +
                                label="Seed",
         | 
| 365 | 
            +
                                minimum=0,
         | 
| 366 | 
            +
                                maximum=MAX_SEED,
         | 
| 367 | 
            +
                                step=1,
         | 
| 368 | 
            +
                                value=42,
         | 
| 369 | 
            +
                            )
         | 
| 370 | 
            +
                            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
         | 
| 371 | 
            +
                            enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    with gr.Column():
         | 
| 374 | 
            +
                        gallery = gr.Gallery(label="Generated Images")
         | 
| 375 | 
            +
                        usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False)
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                    face_files.upload(fn=swap_to_gallery, inputs=face_files, outputs=[uploaded_faces, clear_button_face, face_files])
         | 
| 378 | 
            +
                    pose_files.upload(fn=swap_to_gallery, inputs=pose_files, outputs=[uploaded_poses, clear_button_pose, pose_files])
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                    remove_and_reupload_faces.click(fn=remove_back_to_files, outputs=[uploaded_faces, clear_button_face, face_files])
         | 
| 381 | 
            +
                    remove_and_reupload_poses.click(fn=remove_back_to_files, outputs=[uploaded_poses, clear_button_pose, pose_files])
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    submit.click(
         | 
| 384 | 
            +
                        fn=remove_tips,
         | 
| 385 | 
            +
                        outputs=usage_tips,            
         | 
| 386 | 
            +
                    ).then(
         | 
| 387 | 
            +
                        fn=randomize_seed_fn,
         | 
| 388 | 
            +
                        inputs=[seed, randomize_seed],
         | 
| 389 | 
            +
                        outputs=seed,
         | 
| 390 | 
            +
                        queue=False,
         | 
| 391 | 
            +
                        api_name=False,
         | 
| 392 | 
            +
                    ).then(
         | 
| 393 | 
            +
                        fn=generate_image,
         | 
| 394 | 
            +
                        inputs=[face_files, pose_files, prompt, negative_prompt, style, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed],
         | 
| 395 | 
            +
                        outputs=[gallery, usage_tips]
         | 
| 396 | 
            +
                    )
         | 
| 397 | 
            +
                
         | 
| 398 | 
            +
                gr.Examples(
         | 
| 399 | 
            +
                    examples=get_example(),
         | 
| 400 | 
            +
                    inputs=[face_files, prompt, style, negative_prompt],
         | 
| 401 | 
            +
                    run_on_click=True,
         | 
| 402 | 
            +
                    fn=upload_example_to_gallery,
         | 
| 403 | 
            +
                    outputs=[uploaded_faces, clear_button_face, face_files],
         | 
| 404 | 
            +
                )
         | 
| 405 | 
            +
                
         | 
| 406 | 
            +
                gr.Markdown(article)
         | 
| 407 |  | 
| 408 | 
            +
            demo.launch()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
