Spaces:
Build error
Build error
| # -*- coding: utf-8 -*- | |
| """Untitled18.ipynb | |
| Automatically generated by Colab. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1_vTVH3hBX8wVXIgrW1T2Q4N1DSkWoXV8 | |
| """ | |
| import gradio as gr | |
| import torch | |
| from transformers import TextStreamer | |
| from unsloth import FastLanguageModel | |
| from google.colab import drive | |
| import os | |
| # Ensure necessary packages are installed | |
| # Define the parameters for the model | |
| max_seq_length = 2048 | |
| # Choose any! We auto support RoPE Scaling internally! | |
| dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
| load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. | |
| # Load the model and tokenizer | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name="lora_model", # YOUR MODEL YOU USED FOR TRAINING | |
| max_seq_length=max_seq_length, | |
| dtype=dtype, | |
| load_in_4bit=load_in_4bit, | |
| ) | |
| FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
| # Define the Alpaca prompt | |
| alpaca_prompt = """ | |
| ### Input: | |
| {} | |
| ### Response: | |
| {}""" | |
| # Define the function to generate responses | |
| def chat_alpaca(message: str, history: list, temperature: float, max_new_tokens: int) -> str: | |
| prompt = alpaca_prompt.format(message, "") | |
| inputs = tokenizer([prompt], return_tensors="pt").to("cuda") | |
| # Define the streamer | |
| text_streamer = TextStreamer(tokenizer) | |
| # Generate the response | |
| outputs = model.generate(**inputs, streamer=text_streamer, max_new_tokens=max_new_tokens, temperature=temperature) | |
| response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
| # Return the response | |
| return response | |
| # Define the response function for the Gradio interface | |
| def respond(message, history, system_message, max_new_tokens, temperature, top_p): | |
| return chat_alpaca(message, history, temperature, max_new_tokens) | |
| # Create the Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) | |