|
import gradio as gr |
|
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns, SearchColumns |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, |
|
SUB_TITLE, |
|
EXTERNAL_LINKS, |
|
COMING_SOON_TEXT |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
fields, |
|
WeightType, |
|
Precision |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
|
|
try: |
|
print(EVAL_REQUESTS_PATH) |
|
snapshot_download( |
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
try: |
|
print(EVAL_RESULTS_PATH) |
|
snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
|
|
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
|
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
|
|
def init_leaderboard(dataframe): |
|
if dataframe is None or dataframe.empty: |
|
raise ValueError("Leaderboard DataFrame is empty or None.") |
|
|
|
return Leaderboard( |
|
value=dataframe, |
|
datatype=[c.type for c in fields(AutoEvalColumn)], |
|
select_columns=None, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[], |
|
placeholder="Search by the model name", |
|
label="Searching"), |
|
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], |
|
filter_columns=None, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
interactive=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_result_path = "./src/results/models_2024-10-20-23:34:57.242641.json" |
|
|
|
|
|
|
|
def overall_leaderboard(dataframe): |
|
if dataframe is None or dataframe.empty: |
|
raise ValueError("Leaderboard DataFrame is empty or None.") |
|
|
|
return Leaderboard( |
|
value=dataframe, |
|
datatype=[c.type for c in fields(AutoEvalColumn)], |
|
select_columns=None, |
|
search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[], |
|
placeholder="Search by the model name", |
|
label="Searching"), |
|
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], |
|
filter_columns=None, |
|
interactive=False, |
|
) |
|
|
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.HTML(SUB_TITLE) |
|
gr.HTML(EXTERNAL_LINKS) |
|
|
|
|
|
INTRODUCTION_TEXT_FONT_SIZE = 16 |
|
INTRODUCTION_TEXT = ( |
|
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">' |
|
'<strong>Decentralized Arena</strong> automates, scales, and accelerates "<a href="https://lmarena.ai/">Chatbot Arena</a>" ' |
|
'for large language model (LLM) evaluation across diverse, fine-grained dimensions, ' |
|
'such as mathematics (algebra, geometry, probability), logical reasoning, social reasoning, science (chemistry, physics, biology), or any user-defined dimensions. ' |
|
'The evaluation is decentralized and democratic, with all participating LLMs assessing each other to ensure unbiased and fair results. ' |
|
'With a 95% correlation to Chatbot Arena\'s overall rankings, the system is fully transparent and reproducible.' |
|
'</p>' |
|
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">' |
|
'We actively invite <b>model developers</b> to participate and expedite their benchmarking efforts ' |
|
'and encourage <b>data stakeholders</b> to freely define and evaluate dimensions of interest for their own objectives.' |
|
'</p>' |
|
) |
|
gr.HTML(INTRODUCTION_TEXT) |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
|
|
with gr.TabItem("🏅 Overview", elem_id="llm-benchmark-tab-table", id=0): |
|
|
|
DESCRIPTION_TEXT = """ |
|
Total #models: 57 (Last updated: 2024-10-21) |
|
|
|
This page prvovides a comprehensive overview of model ranks across various dimensions, based on their averaged ranks. |
|
(Missing values are due to the slow or problemtic model responses to be fixed soom.) |
|
""" |
|
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("⭐ Sort by Rank", elem_id="overall_sort_by_rank_subtab", id=0, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
|
|
AutoEvalColumn.model.name, |
|
|
|
AutoEvalColumn.rank_math_algebra.name, |
|
AutoEvalColumn.rank_math_geometry.name, |
|
AutoEvalColumn.rank_math_probability.name, |
|
AutoEvalColumn.rank_reason_logical.name, |
|
AutoEvalColumn.rank_reason_social.name, |
|
AutoEvalColumn.rank_chemistry.name, |
|
AutoEvalColumn.rank_overall.name, |
|
|
|
], |
|
rank_col=['sort_by_rank', 1, 8], |
|
) |
|
) |
|
|
|
with gr.TabItem("⭐ Sort by Score", elem_id="overall_sort_by_score_subtab", id=1, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
|
|
AutoEvalColumn.model.name, |
|
|
|
|
|
|
|
|
|
AutoEvalColumn.score_math_algebra.name, |
|
AutoEvalColumn.score_math_geometry.name, |
|
AutoEvalColumn.score_math_probability.name, |
|
AutoEvalColumn.score_reason_logical.name, |
|
AutoEvalColumn.score_reason_social.name, |
|
AutoEvalColumn.score_chemistry.name, |
|
AutoEvalColumn.score_overall.name, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
], |
|
rank_col=['sort_by_score', 1, 8], |
|
) |
|
) |
|
|
|
|
|
with gr.TabItem("🔢 Math", elem_id="math-tab-table", id=2): |
|
DESCRIPTION_TEXT=""" |
|
Algebra, Geometry, and Probability are the current three main math domains in the leaderboard. |
|
To mitigate the potential impact of data contimination, we have carefully selected the datasets from various sources. |
|
We prioritize **recent math datasets** and focus on **college and beyond level** math questions. |
|
The current datasets include |
|
[MATH](https://arxiv.org/abs/2103.03874), |
|
[MATH-500](https://github.com/openai/prm800k/tree/main/prm800k/math_splits), |
|
[Omni](https://omni-math.github.io/), |
|
[MathQA](https://arxiv.org/abs/1905.13319), |
|
[MathBench](https://arxiv.org/abs/2405.12209), |
|
[SciBench](https://arxiv.org/abs/2307.10635), and more! |
|
|
|
We plan to include more math domains, such as calculus, number theory, and more in the future. |
|
""" |
|
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("🏆 Overview", elem_id="math_overview_subtab", id=0, elem_classes="subtab"): |
|
|
|
with gr.TabItem("⭐ Sort by Rank", elem_id="math_overview_sort_by_rank_subtab", id=0, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.model.name, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AutoEvalColumn.rank_math_algebra.name, |
|
AutoEvalColumn.rank_math_geometry.name, |
|
AutoEvalColumn.rank_math_probability.name, |
|
], |
|
rank_col=['sort_by_rank', 1, 4], |
|
) |
|
) |
|
|
|
with gr.TabItem("⭐ Sort by Score", elem_id="math_overview_sort_by_score_subtab", id=1, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.model.name, |
|
|
|
|
|
|
|
|
|
AutoEvalColumn.score_math_algebra.name, |
|
AutoEvalColumn.score_math_geometry.name, |
|
AutoEvalColumn.score_math_probability.name, |
|
|
|
|
|
|
|
], |
|
rank_col=['sort_by_score', 1, 4], |
|
) |
|
) |
|
|
|
|
|
|
|
with gr.TabItem("🧮 Algebra", elem_id="algebra_subtab", id=1, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_math_algebra.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_math_algebra.name, |
|
|
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_math_algebra.name], |
|
) |
|
) |
|
|
|
with gr.TabItem("📐 Geometry", elem_id="geometry_subtab", id=2, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_math_geometry.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_math_geometry.name, |
|
|
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_math_geometry.name], |
|
) |
|
) |
|
|
|
with gr.TabItem("📊 Probability", elem_id="prob_subtab", id=3, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_math_probability.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_math_probability.name, |
|
|
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_math_probability.name], |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.TabItem("🧠 Reasoning", elem_id="reasonong-tab-table", id=3): |
|
DESCRIPTION_TEXT = """ |
|
Reasoning is a broad domain for evaluating LLMs, but traditional tasks like commonsense reasoning have become less effective in differentiating modern LLMs. |
|
We now present two challenging types of reasoning: logical reasoning and social reasoning, both of which present more meaningful and sophisticated ways to assess LLM performance. |
|
|
|
For logical reasoning, we leverage datasets from sources such as |
|
[BIG-Bench Hard (BBH)](https://arxiv.org/abs/2210.09261), |
|
[FOLIO](https://arxiv.org/abs/2209.00840), |
|
[LogiQA2.0](https://github.com/csitfun/LogiQA2.0), |
|
[PrOntoQA](https://arxiv.org/abs/2210.01240), |
|
[ReClor](https://arxiv.org/abs/2002.04326), |
|
These cover a range of tasks including deductive reasoning, object counting and tracking, pattern recognition, |
|
temporal reasoning, first-order logic reaosning, etc. |
|
For social reasoning, we collect datasets from |
|
[MMToM-QA (Text-only)](https://arxiv.org/abs/2401.08743), |
|
[BigToM](https://arxiv.org/abs/2306.15448), |
|
[Adv-CSFB](https://arxiv.org/abs/2305.14763), |
|
[SocialIQA](https://arxiv.org/abs/1904.09728), |
|
[NormBank](https://arxiv.org/abs/2305.17008), covering challenging social reasoning tasks, |
|
such as social commonsense reasoning, social normative reasoning, Theory of Mind (ToM) reasoning, etc. |
|
More fine-grained types of reasoning, such as symbolic, analogical, counterfactual reasoning, are planned to be added in the future. |
|
|
|
""" |
|
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("🏆 Overview", elem_id="reasoning_overview_subtab", id=0, elem_classes="subtab"): |
|
|
|
with gr.TabItem("⭐ Sort by Rank", elem_id="reasoning_overview_sort_by_rank_subtab", id=0, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.model.name, |
|
|
|
|
|
|
|
|
|
AutoEvalColumn.rank_reason_logical.name, |
|
AutoEvalColumn.rank_reason_social.name, |
|
], |
|
rank_col=['sort_by_rank', 1, 3], |
|
) |
|
) |
|
|
|
with gr.TabItem("⭐ Sort by Score", elem_id="reasoning_overview_sort_by_score_subtab", id=1, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.model.name, |
|
|
|
|
|
|
|
|
|
AutoEvalColumn.score_reason_logical.name, |
|
AutoEvalColumn.score_reason_social.name, |
|
], |
|
rank_col=['sort_by_score', 1, 3], |
|
) |
|
) |
|
|
|
|
|
with gr.TabItem("🧩 Logical", elem_id="logical_subtab", id=1, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_reason_logical.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_reason_logical.name, |
|
|
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_reason_logical.name], |
|
) |
|
) |
|
|
|
with gr.TabItem("🗣️ Social", elem_id="social_subtab", id=2, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_reason_social.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_reason_social.name, |
|
|
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_reason_social.name], |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.TabItem("🔬 Science", elem_id="science-table", id=4): |
|
CURRENT_TEXT = """ |
|
Scientific tasks are crucial for evaluating LLMs, requiring both domain-specific knowledge and reasoning capabilities. |
|
|
|
We are adding several fine-grained scientific domains to the leaderboard. The forthcoming ones are biology, chemistry, and physics. |
|
We have diversely and aggressively collected recent scientific datasets, including but not limited to |
|
[GPQA](https://arxiv.org/abs/2311.12022), |
|
[JEEBench](https://aclanthology.org/2023.emnlp-main.468/), |
|
[MMLU-Pro](https://arxiv.org/abs/2406.01574), |
|
[OlympiadBench](https://arxiv.org/abs/2402.14008), |
|
[SciBench](https://arxiv.org/abs/2307.10635), |
|
[SciEval](https://arxiv.org/abs/2308.13149). |
|
""" |
|
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("🏆 Overview", elem_id="science_overview_subtab", id=0, elem_classes="subtab"): |
|
|
|
with gr.TabItem("⭐ Sort by Rank", elem_id="science_overview_sort_by_rank_subtab", id=0, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.model.name, |
|
|
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
|
|
AutoEvalColumn.rank_chemistry.name, |
|
], |
|
rank_col=['sort_by_rank', 4, 5], |
|
) |
|
) |
|
|
|
with gr.TabItem("⭐ Sort by Score", elem_id="science_overview_sort_by_score_subtab", id=1, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.model.name, |
|
|
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
|
|
AutoEvalColumn.score_chemistry.name, |
|
|
|
], |
|
rank_col=['sort_by_score', 4, 5], |
|
) |
|
) |
|
|
|
|
|
|
|
with gr.TabItem("🧪 Chemistry", elem_id="chemistry_subtab", id=1, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_chemistry.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_chemistry.name, |
|
|
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_chemistry.name], |
|
) |
|
) |
|
|
|
with gr.TabItem("⚛️ Physics", elem_id="physics_subtab", id=2, elem_classes="subtab"): |
|
CURRENT_TEXT = """ |
|
# Coming soon! |
|
""" |
|
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("🧬 Biology", elem_id="biology_subtab", id=3, elem_classes="subtab"): |
|
CURRENT_TEXT = """ |
|
# Coming soon! |
|
""" |
|
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("</> Coding", elem_id="coding-table", id=5): |
|
CURRENT_TEXT = """ |
|
We are working on adding more fine-grained tasks in coding domains to the leaderboard. |
|
The forthcoming ones focus on Python, Java, and C++, with plans to expand to more languages. |
|
We collect a variety of recent coding datasets, including |
|
[HumanEval](https://huggingface.co/datasets/openai/openai_humaneval), |
|
[MBPP](https://huggingface.co/datasets/google-research-datasets/mbpp), |
|
[HumanEvalFix](https://huggingface.co/datasets/bigcode/humanevalpack), |
|
[newly crawled LeetCode data](https://leetcode.com/problemset/), |
|
filtered code-related queries from [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) and more! |
|
Our efforts also include synthesizing new code-related queries to ensure diversity! |
|
""" |
|
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("➕ C++", elem_id="cpp_subtab", id=0, elem_classes="subtab"): |
|
|
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_cpp.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_cpp.name, |
|
|
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_cpp.name], |
|
) |
|
) |
|
|
|
with gr.TabItem("🐍 Python", elem_id="python_subtab", id=1, elem_classes="subtab"): |
|
CURRENT_TEXT = """ |
|
# Coming soon! |
|
""" |
|
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("☕ Java", elem_id="java_subtab", id=2, elem_classes="subtab"): |
|
CURRENT_TEXT = """ |
|
# Coming soon! |
|
""" |
|
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
|
|
with gr.TabItem("🎯 Mixed", elem_id="llm-benchmark-tab-table", id=1): |
|
DESCRIPTION_TEXT = """ |
|
Overall dimension measures the comprehensive performance of LLMs across diverse tasks. |
|
We start with diverse questions from the widely-used [MT-Bench](https://arxiv.org/abs/2306.05685), |
|
coving a wide range of domains, including writing, roleplay, extraction, reasoning, math, coding, knowledge I (STEM), and knowledge II (humanities/social science). |
|
""" |
|
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("MT-Bench", elem_id="mt-bench_subtab", id=0, elem_classes="subtab"): |
|
leaderboard = overall_leaderboard( |
|
get_model_leaderboard_df( |
|
model_result_path, |
|
benchmark_cols=[ |
|
AutoEvalColumn.rank_overall.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.score_overall.name, |
|
AutoEvalColumn.sd_overall.name, |
|
AutoEvalColumn.license.name, |
|
AutoEvalColumn.organization.name, |
|
AutoEvalColumn.knowledge_cutoff.name, |
|
], |
|
rank_col=[AutoEvalColumn.rank_overall.name], |
|
)) |
|
|
|
|
|
|
|
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=6): |
|
ABOUT_TEXT = """ |
|
# About Us |
|
|
|
[Decentralized Arena](https://de-arena.maitrix.org/) is an open-source project that automates and scales the evaluation of large language models (LLMs) across various fine-grained dimensions, |
|
developed by reseachers from UCSD, CMU, MBZUAI, [Maitrix.org](https://maitrix.org/) and [LLM360](https://www.llm360.ai/). |
|
|
|
Stay tuned for more updates and new features! |
|
|
|
## Team members |
|
Yanbin Yin, [Zhen Wang](https://zhenwang9102.github.io/), [Kun Zhou](https://lancelot39.github.io/), Xiangdong Zhang, |
|
[Shibo Hao](https://ber666.github.io/), [Yi Gu](https://www.yigu.page/), [Jieyuan Liu](https://www.linkedin.com/in/jieyuan-liu/), [Somanshu Singla](https://www.linkedin.com/in/somanshu-singla-105636214/), [Tianyang Liu](https://leolty.github.io/), |
|
[Eric P. Xing](https://www.cs.cmu.edu/~epxing/), [Zhengzhong Liu](https://hunterhector.github.io/), [Haojian Jin](https://www.haojianj.in/), |
|
[Zhiting Hu](https://zhiting.ucsd.edu/) |
|
|
|
## Contact Us |
|
- Follow us on X, [Maitrix.org](https://twitter.com/MaitrixOrg) and [LLM360](https://twitter.com/llm360) |
|
- Email us at [Zhen Wang](mailto:zhenwang9102@gmail.com), [Kun Zhou](mailto:franciskunzhou@gmail.com) and [Zhiting Hu](mailto:zhitinghu@gmail.com) |
|
|
|
""" |
|
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
''' |
|
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Row(): |
|
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
model_type = gr.Dropdown( |
|
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], |
|
label="Model type", |
|
multiselect=False, |
|
value=None, |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="float16", |
|
interactive=True, |
|
) |
|
weight_type = gr.Dropdown( |
|
choices=[i.value.name for i in WeightType], |
|
label="Weights type", |
|
multiselect=False, |
|
value="Original", |
|
interactive=True, |
|
) |
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
precision, |
|
weight_type, |
|
model_type, |
|
], |
|
submission_result, |
|
) |
|
''' |
|
|
|
with gr.Row(): |
|
with gr.Accordion("📙 Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=1800) |
|
scheduler.start() |
|
demo.queue(default_concurrency_limit=40).launch() |