|
import glob |
|
import json |
|
import math |
|
import os |
|
from dataclasses import dataclass |
|
|
|
import dateutil |
|
import numpy as np |
|
|
|
from src.display.formatting import make_clickable_model |
|
from src.display.utils import AutoEvalColumn, Tasks, Groups |
|
|
|
@dataclass |
|
class EvalResult: |
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
results: dict |
|
date: str = "" |
|
|
|
@classmethod |
|
def init_from_json_file(self, json_filepath): |
|
"""Inits the result from the specific model result file""" |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
config = data.get("config") |
|
|
|
|
|
org_and_model = config.get("model_name", None) |
|
org_and_model = org_and_model.split("/", 1) |
|
|
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
date = config.get("submitted_time", None) |
|
result_key = f"{org}_{model}_{date}" |
|
full_model = "/".join(org_and_model) |
|
|
|
|
|
results = {} |
|
for task in Tasks: |
|
|
|
|
|
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) |
|
if accs.size == 0 or any([acc is None for acc in accs]): |
|
continue |
|
|
|
mean_acc = np.mean(accs) * 100.0 |
|
results[task.benchmark] = mean_acc |
|
|
|
return self( |
|
eval_name=result_key, |
|
full_model=full_model, |
|
org=org, |
|
model=model, |
|
results=results, |
|
date=date |
|
) |
|
|
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks) |
|
data_dict = { |
|
"eval_name": self.eval_name, |
|
AutoEvalColumn.model_submission_date.name: self.date, |
|
AutoEvalColumn.model.name: make_clickable_model(self.full_model), |
|
AutoEvalColumn.dummy.name: self.full_model, |
|
AutoEvalColumn.average.name: average, |
|
} |
|
|
|
for task in Tasks: |
|
data_dict[task.col_name] = self.results[task.benchmark] |
|
|
|
return data_dict |
|
|
|
|
|
|
|
|
|
@dataclass |
|
class EvalResultGroup: |
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
results: dict |
|
date: str = "" |
|
|
|
@classmethod |
|
def init_from_json_file(self, json_filepath): |
|
"""Inits the result from the specific model result file""" |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
config = data.get("config") |
|
|
|
|
|
org_and_model = config.get("model_name", None) |
|
org_and_model = org_and_model.split("/", 1) |
|
|
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
date = config.get("submitted_time", None) |
|
result_key = f"{org}_{model}_{date}" |
|
full_model = "/".join(org_and_model) |
|
|
|
|
|
results = {} |
|
for task in Groups: |
|
|
|
|
|
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) |
|
if accs.size == 0 or any([acc is None for acc in accs]): |
|
continue |
|
|
|
mean_acc = np.mean(accs) * 100.0 |
|
results[task.benchmark] = mean_acc |
|
|
|
return self( |
|
eval_name=result_key, |
|
full_model=full_model, |
|
org=org, |
|
model=model, |
|
results=results, |
|
date=date |
|
) |
|
|
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
average = sum([v for v in self.results.values() if v is not None]) / len(Groups) |
|
data_dict = { |
|
"eval_name": self.eval_name, |
|
AutoEvalColumn.model_submission_date.name: self.date, |
|
AutoEvalColumn.model.name: make_clickable_model(self.full_model), |
|
AutoEvalColumn.dummy.name: self.full_model, |
|
AutoEvalColumn.average.name: average, |
|
} |
|
|
|
for task in Groups: |
|
data_dict[task.col_name] = self.results[task.benchmark] |
|
|
|
return data_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_raw_eval_results(results_path: str) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
for root, _, files in os.walk(results_path): |
|
|
|
if len(files) == 0 or any([not f.endswith(".json") for f in files]): |
|
continue |
|
|
|
|
|
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) |
|
|
|
for file in files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath) |
|
|
|
|
|
eval_name = eval_result.eval_name |
|
eval_results[eval_name] = eval_result |
|
|
|
results = [] |
|
for v in eval_results.values(): |
|
try: |
|
v.to_dict() |
|
results.append(v) |
|
except KeyError: |
|
continue |
|
|
|
return results |
|
|
|
|
|
|
|
|
|
def get_group_eval_results(results_path: str) -> list[EvalResultGroup]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
for root, _, files in os.walk(results_path): |
|
|
|
if len(files) == 0 or any([not f.endswith(".json") for f in files]): |
|
continue |
|
|
|
|
|
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) |
|
|
|
for file in files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResultGroup.init_from_json_file(model_result_filepath) |
|
|
|
|
|
eval_name = eval_result.eval_name |
|
eval_results[eval_name] = eval_result |
|
|
|
results = [] |
|
print(eval_results) |
|
for v in eval_results.values(): |
|
try: |
|
v.to_dict() |
|
results.append(v) |
|
except KeyError: |
|
print("key error") |
|
continue |
|
|
|
return results |
|
|
|
|