|
import torch |
|
import torch.nn as nn |
|
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg |
|
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg |
|
from methods.elasticdnn.model.base import ElasticDNNUtil |
|
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from glip import ElasticGLIPUtil, FMLoRA_GLIP_Util, FM_to_MD_GLIP_Util, ElasticDNN_OfflineMMDetFMModel, ElasticDNN_OfflineMMDetMDModel |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util |
|
from methods.elasticdnn.model.vit import ElasticViTUtil |
|
from methods.elasticdnn.api.algs.md_pretraining_index_v2_train_index_and_md import ElasticDNN_MDPretrainingIndexAlg |
|
from utils.dl.common.model import LayerActivation3, get_module, get_parameter |
|
from utils.common.exp import save_models_dict_for_init, get_res_save_dir |
|
from data import build_scenario |
|
import torch.nn.functional as F |
|
from maskrcnn_benchmark.structures.bounding_box import BoxList |
|
import os |
|
from utils.dl.common.loss import CrossEntropyLossSoft |
|
from new_impl.cv.feat_align.main_glip import OnlineFeatAlignModel, FeatAlignAlg |
|
import tqdm |
|
from new_impl.cv.feat_align.mmd import mmd_rbf |
|
from new_impl.cv.utils.baseline_da import baseline_da |
|
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel |
|
|
|
os.environ['TOKENIZERS_PARALLELISM'] = 'true' |
|
|
|
torch.cuda.set_device(0) |
|
device = 'cuda' |
|
app_name = 'cls' |
|
|
|
scenario = build_scenario( |
|
source_datasets_name=['MM-COCO2017'], |
|
target_datasets_order=['MM-CityscapesDet', 'MM-GTA5Det'] * 10, |
|
da_mode='close_set', |
|
data_dirs={ |
|
'MM-COCO2017': '/data/zql/datasets/coco2017', |
|
'MM-CityscapesDet': '/data/zql/datasets/cityscape', |
|
'MM-GTA5Det': '/data/zql/datasets/GTA-ls-copy/GTA5', |
|
}, |
|
) |
|
|
|
class DetOnlineFeatAlignModel(OnlineFeatAlignModel): |
|
def get_trained_params(self): |
|
|
|
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters()] |
|
return qkv_and_norm_params |
|
|
|
def get_feature_hook(self): |
|
return LayerActivation3(get_module(self.models_dict['main'], 'model.rpn'), False, self.device) |
|
|
|
def forward_to_get_task_loss(self, x, y): |
|
loss_dict = self.infer(x) |
|
losses = sum(loss for loss in loss_dict.values()) |
|
|
|
|
|
return losses |
|
|
|
def get_mmd_loss(self, f1, f2): |
|
|
|
|
|
return mmd_rbf(f1, f2) |
|
|
|
def infer(self, x, *args, **kwargs): |
|
return self.models_dict['main'](**x) |
|
|
|
def get_accuracy(self, test_loader, *args, **kwargs): |
|
|
|
_d = test_loader.dataset |
|
imgsz = _d.cocods.img_size |
|
cls_num = len(_d.cocods.class_ids) |
|
|
|
from data import build_dataloader |
|
if _d.__class__.__name__ == 'MergedDataset': |
|
|
|
datasets = _d.datasets |
|
if self.collate_fn is None: |
|
test_loaders = [build_dataloader(d, test_loader.batch_size, test_loader.num_workers, False, None, collate_fn=None) for d in datasets] |
|
else: |
|
test_loaders = [build_dataloader(d, test_loader.batch_size, test_loader.num_workers, False, None, collate_fn=self.collate_fn) for d in datasets] |
|
accs = [self.get_accuracy(loader) for loader in test_loaders] |
|
|
|
return sum(accs) / len(accs) |
|
|
|
|
|
|
|
model = self.models_dict['main'] |
|
device = self.device |
|
model.eval() |
|
|
|
|
|
|
|
model = model.to(device) |
|
from evaluator import COCOEvaluator, MMCOCODecoder |
|
from utils.common.others import HiddenPrints |
|
with torch.no_grad(): |
|
with HiddenPrints(): |
|
evaluator = COCOEvaluator( |
|
dataloader=test_loader, |
|
img_size=imgsz, |
|
confthre=0.01, |
|
nmsthre=0.65, |
|
num_classes=cls_num, |
|
testdev=False |
|
) |
|
res = evaluator.evaluate(model, False, False, decoder=MMCOCODecoder) |
|
map50 = res[1] |
|
|
|
return map50 |
|
|
|
from glip import glip_model, build_transform, run_ner, collect_mm_fn |
|
cfg_path = 'new_impl/cv/glip/object_detection/pretrained_model/glip_Swin_T_O365_GoldG.yaml' |
|
model_path = 'new_impl/cv/glip/object_detection/pretrained_model/glip_tiny_model_o365_goldg_cc_sbu.pth' |
|
config, _ = glip_model(cfg_path, model_path) |
|
transform = build_transform(config, None) |
|
|
|
da_alg = FeatAlignAlg |
|
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup |
|
|
|
da_model = DetOnlineFeatAlignModel( |
|
app_name, |
|
'new_impl/cv/glip/object_detection/results/det_md_wo_fbs.py/20231129/999999-153230-results/models/md_best.pt', |
|
device |
|
) |
|
da_alg_hyp = { |
|
'MM-GTA5Det': { |
|
'train_batch_size': 8, |
|
'val_batch_size': 1, |
|
'num_workers': 8, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 2e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, |
|
'scheduler': '', |
|
'scheduler_args': {}, |
|
'num_iters': 100, |
|
'val_freq': 20, |
|
'feat_align_loss_weight': 0.3, |
|
'transform':transform |
|
}, |
|
'MM-CityscapesDet': { |
|
'train_batch_size': 8, |
|
'val_batch_size': 1, |
|
'num_workers': 8, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 2e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, |
|
'scheduler': '', |
|
'scheduler_args': {}, |
|
'num_iters': 100, |
|
'val_freq': 20, |
|
'feat_align_loss_weight': 0.3, |
|
'transform':transform |
|
}, |
|
} |
|
|
|
|
|
baseline_da( |
|
app_name, |
|
scenario, |
|
da_alg, |
|
da_alg_hyp, |
|
da_model, |
|
device, |
|
__file__, |
|
"results", |
|
collate_fn=collect_mm_fn |
|
) |