LINC-BIT's picture
Upload 1912 files
b84549f verified
from ..data_aug import pil_image_to_tensor
from ..ab_dataset import ABDataset
from ..dataset_split import train_val_split
from ..dataset_cache import get_dataset_cache_path, read_cached_dataset_status, cache_dataset_status
from .mm_image_folder import MMImageFolder
import os
from typing import Dict, List, Optional
from torchvision.transforms import Compose
from ..registery import dataset_register
with open(os.path.join(os.path.dirname(__file__), 'imagenet_classes.txt'), 'r') as f:
classes = [line.split(' ')[2].strip() for line in f.readlines()]
assert len(classes) == 1000
@dataset_register(
name='ImageNet-MM-128',
classes=classes,
task_type='MM Image Classification',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class ImageNet128(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = pil_image_to_tensor(128)
self.transform = transform
root_dir = os.path.join(root_dir, 'train' if split != 'test' else 'val')
dataset = MMImageFolder(root_dir, [c for c in classes if c not in ignore_classes], transform=transform)
cache_file_path = get_dataset_cache_path(root_dir, classes, ignore_classes, idx_map)
if os.path.exists(cache_file_path):
dataset.samples = read_cached_dataset_status(cache_file_path, 'ImageNet-' + split)
else:
if len(ignore_classes) > 0:
ignore_classes_idx = [classes.index(c) for c in ignore_classes]
dataset.samples = [s for s in dataset.samples if s[1] not in ignore_classes_idx]
if idx_map is not None:
dataset.samples = [(s[0], idx_map[s[1]]) if s[1] in idx_map.keys() else s for s in dataset.samples]
cache_dataset_status(dataset.samples, cache_file_path, 'ImageNet-' + split)
if split != 'test':
dataset = train_val_split(dataset, split)
return dataset