|
import torch |
|
import sys |
|
from torch import nn |
|
from new_impl.cv.dnns.vit import make_softmax_prunable |
|
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineClsFMModel, ElasticDNN_OfflineClsMDModel |
|
from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg |
|
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from beit import FM_to_MD_beit_Util |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from beit import FMLoRA_beit_Util |
|
from new_impl.cv.elasticdnn.model.vit import ElasticViTUtil |
|
from utils.dl.common.model import LayerActivation, get_module, get_parameter |
|
from utils.common.exp import save_models_dict_for_init, get_res_save_dir |
|
from data import build_scenario |
|
from utils.dl.common.loss import CrossEntropyLossSoft |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ElasticDNN_beit_OfflineClsFMModel(ElasticDNN_OfflineClsFMModel): |
|
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): |
|
return FM_to_MD_beit_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], |
|
reducing_width_ratio, samples).to(self.device) |
|
|
|
def get_feature_hook(self) -> LayerActivation: |
|
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) |
|
|
|
def get_elastic_dnn_util(self) -> ElasticDNNUtil: |
|
return ElasticbeitUtil() |
|
|
|
def forward_to_get_task_loss(self, x, y, *args, **kwargs): |
|
return F.cross_entropy(self.infer(x).logits, y) |
|
|
|
def get_lora_util(self) -> FMLoRA_Util: |
|
return FMLoRA_beit_Util() |
|
|
|
def get_task_head_params(self): |
|
head = get_module(self.models_dict['main'], 'classifier') |
|
return list(head.parameters()) |
|
|
|
|
|
class ElasticDNN_beit_OfflineClsMDModel(ElasticDNN_OfflineClsMDModel): |
|
def __init__(self, name: str, models_dict_path: str, device: str): |
|
super().__init__(name, models_dict_path, device) |
|
|
|
self.distill_criterion = CrossEntropyLossSoft() |
|
|
|
def get_feature_hook(self) -> LayerActivation: |
|
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) |
|
|
|
def forward_to_get_task_loss(self, x, y, *args, **kwargs): |
|
return F.cross_entropy(self.infer(x).logits, y) |
|
|
|
def get_distill_loss(self, student_output, teacher_output): |
|
return self.distill_criterion(student_output, teacher_output) |
|
def get_matched_param_of_fm(self, self_param_name, fm: nn.Module): |
|
|
|
if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]): |
|
return None |
|
|
|
p = get_parameter(self.models_dict['main'], self_param_name) |
|
if p.dim() == 0: |
|
return None |
|
elif p.dim() == 1 and 'norm' in self_param_name and 'weight' in self_param_name: |
|
return get_parameter(fm, self_param_name) |
|
|
|
|
|
if ('attention.attention.query' in self_param_name or 'attention.attention.key' in self_param_name or \ |
|
'attention.attention.value' in self_param_name) and ('weight' in self_param_name): |
|
ss = self_param_name.split('.') |
|
|
|
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv' |
|
fm_qkv = get_module(fm, fm_qkv_name) |
|
|
|
fm_abs_name = '.'.join(ss[0: -1]) + '.abs' |
|
fm_abs = get_module(fm, fm_abs_name) |
|
|
|
return torch.cat([ |
|
fm_qkv.weight.data, |
|
torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0) |
|
], dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
elif ('attention.attention.query' in self_param_name or 'attention.attention.key' in self_param_name or \ |
|
'attention.attention.value' in self_param_name) and ('bias' in self_param_name): |
|
ss = self_param_name.split('.') |
|
|
|
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv.bias' |
|
return get_parameter(fm, fm_qkv_name) |
|
|
|
elif 'intermediate.dense' in self_param_name and 'weight' in self_param_name: |
|
fm_param_name = self_param_name.replace('.linear', '') |
|
return get_parameter(fm, fm_param_name) |
|
|
|
else: |
|
return get_parameter(fm, self_param_name) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
from utils.dl.common.env import set_random_seed |
|
set_random_seed(1) |
|
|
|
|
|
|
|
fm_models_dict_path = 'new_impl/cv/beit/results/beit_cls.py/20231028/999998-155807-/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/cv/beit/beit_cls.py/models/fm_best.pt' |
|
fm_models_dict = torch.load(fm_models_dict_path) |
|
fm_models_dict['main'] = make_softmax_prunable(fm_models_dict['main']) |
|
fm_models_dict_path = save_models_dict_for_init(fm_models_dict, __file__, 'fm_beit_cls_lora') |
|
md_models_dict_path = save_models_dict_for_init({ |
|
'main': -1 |
|
}, __file__, 'md_beit_cls_lora') |
|
torch.cuda.set_device(1) |
|
device = 'cuda' |
|
|
|
fm_model = ElasticDNN_beit_OfflineClsFMModel('fm', fm_models_dict_path, device) |
|
md_model = ElasticDNN_beit_OfflineClsMDModel('md', md_models_dict_path, device) |
|
|
|
|
|
models = { |
|
'fm': fm_model, |
|
'md': md_model |
|
} |
|
fm_to_md_alg = ElasticDNN_MDPretrainingWoFBSAlg(models, get_res_save_dir(__file__, sys.argv[0])) |
|
|
|
|
|
scenario = build_scenario( |
|
source_datasets_name=['GTA5Cls', 'SuperviselyPersonCls'], |
|
target_datasets_order=['CityscapesCls', 'BaiduPersonCls'] * 15, |
|
da_mode='close_set', |
|
data_dirs={ |
|
'GTA5Cls': '/data/zql/datasets/gta5_for_cls_task', |
|
'SuperviselyPersonCls': '/data/zql/datasets/supervisely_person_for_cls_task', |
|
'CityscapesCls': '/data/zql/datasets/cityscapes_for_cls_task', |
|
'BaiduPersonCls': '/data/zql/datasets/baidu_person_for_cls_task' |
|
}, |
|
) |
|
|
|
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup |
|
fm_to_md_alg.run(scenario, hyps={ |
|
'launch_tbboard': False, |
|
|
|
'samples_size': (1, 3, 224, 224), |
|
'generate_md_width_ratio': 4, |
|
|
|
'train_batch_size': 128, |
|
'val_batch_size': 512, |
|
'num_workers': 16, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, |
|
'scheduler': 'LambdaLR', |
|
'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 70000)}, |
|
'num_iters': 80000, |
|
'val_freq': 400, |
|
'distill_loss_weight': 1.0 |
|
}) |
|
|
|
|
|
|