LINC-BIT's picture
Upload 1912 files
b84549f verified
raw
history blame
3.87 kB
from ..ab_dataset import ABDataset
from ..dataset_split import train_val_split, train_val_test_split
from typing import Dict, List, Optional
from torchvision.transforms import Compose
from .yolox_data_util.api import get_default_yolox_coco_dataset, get_yolox_coco_dataset_with_caption, remap_dataset, ensure_index_start_from_1_and_successive, coco_train_val_test_split
import os
from ..registery import dataset_register
@dataset_register(
name='GTA5Det',
# classes=[
# 'road', 'sidewalk', 'building', 'wall',
# 'fence', 'pole', 'light', 'sign',
# 'vegetation', 'terrain', 'sky', 'people', # person
# 'rider', 'car', 'truck', 'bus', 'train',
# 'motocycle', 'bicycle', '?'
# ],
classes=[
'car', 'bus'
],
task_type='Object Detection',
object_type='Driving',
class_aliases=[],
shift_type=None
)
class GTA5Det(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
assert transform is None, \
'The implementation of object detection datasets is based on YOLOX (https://github.com/Megvii-BaseDetection/YOLOX) ' \
'where normal `torchvision.transforms` is not supported. You can re-implement the dataset to override default data aug.'
ann_json_file_path = os.path.join(root_dir, 'coco_ann.json')
assert os.path.exists(ann_json_file_path), \
f'Please put the COCO annotation JSON file in root_dir: `{root_dir}/coco_ann.json`.'
ann_json_file_path = ensure_index_start_from_1_and_successive(ann_json_file_path)
ann_json_file_path = remap_dataset(ann_json_file_path, ignore_classes, idx_map)
ann_json_file_path = coco_train_val_test_split(ann_json_file_path, split)
dataset = get_default_yolox_coco_dataset(root_dir, ann_json_file_path, train=(split == 'train'))
# dataset = train_val_test_split(dataset, split)
return dataset
@dataset_register(
name='MM-GTA5Det',
# classes=[
# 'road', 'sidewalk', 'building', 'wall',
# 'fence', 'pole', 'light', 'sign',
# 'vegetation', 'terrain', 'sky', 'people', # person
# 'rider', 'car', 'truck', 'bus', 'train',
# 'motocycle', 'bicycle', '?'
# ],
classes=[
'car', 'bus'
],
task_type='MM Object Detection',
object_type='Driving',
class_aliases=[],
shift_type=None
)
class MM_GTA5Det(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
# assert transform is None, \
# 'The implementation of object detection datasets is based on YOLOX (https://github.com/Megvii-BaseDetection/YOLOX) ' \
# 'where normal `torchvision.transforms` is not supported. You can re-implement the dataset to override default data aug.'
ann_json_file_path = os.path.join(root_dir, 'coco_ann.json')
assert os.path.exists(ann_json_file_path), \
f'Please put the COCO annotation JSON file in root_dir: `{root_dir}/coco_ann.json`.'
ann_json_file_path = ensure_index_start_from_1_and_successive(ann_json_file_path)
ann_json_file_path = remap_dataset(ann_json_file_path, ignore_classes, idx_map)
ann_json_file_path = coco_train_val_test_split(ann_json_file_path, split)
self.ann_json_file_path_for_split = ann_json_file_path
dataset = get_yolox_coco_dataset_with_caption(root_dir, ann_json_file_path, transform=transform, train=(split == 'train'), classes=classes)
# dataset = train_val_test_split(dataset, split)
return dataset