Spaces:
Sleeping
Sleeping
from transformers import Blip2Processor, Blip2ForConditionalGeneration | |
from PIL import Image | |
import torch | |
def generate_caption(image_path, trigger_word): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load BLIP-2 (smaller model for HF Spaces) | |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
model = Blip2ForConditionalGeneration.from_pretrained( | |
"Salesforce/blip2-opt-2.7b", | |
torch_dtype=torch.float16 | |
).to(device) | |
# Generate caption | |
image = Image.open(image_path) | |
inputs = processor(image, return_tensors="pt").to(device, torch.float16) | |
generated_ids = model.generate(**inputs, max_new_tokens=50) | |
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
return f"a photo of [{trigger_word}], {caption}" |