lkm2835's picture
Update app.py
2f607d2 verified
raw
history blame
5.18 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import torch
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import InferenceClient
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct"
MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384"))
DESCRIPTION = """\
# <center> EXAONE 3.5: Series of Large Language Models for Real-world Use Cases </center>
##### <center> We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills. </center>
<center>πŸ‘‹ For more details, please check <a href=https://huggingface.co/collections/LGAI-EXAONE/exaone-35-674d0e1bb3dcd2ab6f39dbb4>EXAONE-3.5 collections</a>, <a href=https://www.lgresearch.ai/blog/view?seq=507>our blog</a> or <a href=https://arxiv.org/abs/2412.04862>technical report</a></center>
#### <center> EXAONE-3.5-32B-Instruct Demo Coming Soon.. </center>
"""
EXAMPLES = [
["Explain how wonderful you are"],
["슀슀둜λ₯Ό μžλž‘ν•΄ 봐"],
]
BOT_AVATAR = "EXAONE_logo.png"
selected_model = gr.Radio(value="https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud",visible=False)
ADDITIONAL_INPUTS = [
gr.Textbox(
value="You are EXAONE model from LG AI Research, a helpful assistant.",
label="System Prompt",
render=False,
),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.7,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=1,
),
selected_model
]
tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct")
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
selected_model: str = "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud",
) -> Iterator[str]:
print(f'model: {selected_model}')
messages = [{"role":"system","content": system_prompt}]
print(f'message: {message}')
print(f'chat_history: {chat_history}')
for user, assistant in chat_history:
messages.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
messages.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
messages = tokenizer.decode(input_ids[0])
client = InferenceClient(selected_model, token=HF_TOKEN)
gen_kwargs = dict(
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
stop=["[|endofturn|]"]
)
output = client.text_generation(messages, **gen_kwargs)
return output
def radio1_change(model_size):
return f"<center><font size=5>EXAONE-3.5-{model_size}-instruct</center>"
def choices_model(model_size):
endpoint_url_dict = {
"2.4B": "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud", # L4
"7.8B": "https://wafz6im0d595g715.us-east-1.aws.endpoints.huggingface.cloud", # L40S
}
return endpoint_url_dict[model_size]
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(
label="EXAONE-3.5-Instruct",
avatar_images=[None, BOT_AVATAR],
layout="bubble",
bubble_full_width=False
),
additional_inputs=ADDITIONAL_INPUTS,
stop_btn=None,
examples=EXAMPLES,
cache_examples=False,
)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown("""<p align="center"><img src="https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct-Demo/resolve/main/EXAONE_Symbol%2BBI_3d.png" style="margin-right: 20px; height: 50px"/><p>""")
gr.Markdown(DESCRIPTION)
markdown = gr.Markdown("<center><font size=5>EXAONE-3.5-2.4B-instruct</center>")
with gr.Row():
model_size = ["2.4B", "7.8B"]
radio1 = gr.Radio(choices=model_size, label="EXAONE-3.5-Instruct", value=model_size[0])
radio1.change(radio1_change, inputs=radio1, outputs=markdown)
radio1.change(choices_model, inputs=radio1, outputs=selected_model)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=25).launch()