Spaces:
Running
on
Zero
Running
on
Zero
Update inference_gradio.py
Browse files- inference_gradio.py +51 -95
inference_gradio.py
CHANGED
|
@@ -16,29 +16,15 @@ from cached_path import cached_path
|
|
| 16 |
|
| 17 |
from lemas_tts.api import TTS, PRETRAINED_ROOT, CKPTS_ROOT
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
# Device detection
|
| 29 |
-
if IS_SPACES:
|
| 30 |
-
# On Spaces main process we must not initialize CUDA; keep TTS on CPU.
|
| 31 |
-
device = "cpu"
|
| 32 |
-
else:
|
| 33 |
-
device = (
|
| 34 |
-
"cuda"
|
| 35 |
-
if torch.cuda.is_available()
|
| 36 |
-
else "xpu"
|
| 37 |
-
if torch.xpu.is_available()
|
| 38 |
-
else "mps"
|
| 39 |
-
if torch.backends.mps.is_available()
|
| 40 |
-
else "cpu"
|
| 41 |
-
)
|
| 42 |
|
| 43 |
REPO_ROOT = Path(__file__).resolve().parent
|
| 44 |
|
|
@@ -72,7 +58,7 @@ class UVR5:
|
|
| 72 |
sys.path.append(self.code_dir)
|
| 73 |
|
| 74 |
# Reuse an already-loaded model if it matches the requested device.
|
| 75 |
-
if self.model is not None
|
| 76 |
return self.model
|
| 77 |
|
| 78 |
from multiprocess_cuda_infer import ModelData, Inference
|
|
@@ -85,42 +71,25 @@ class UVR5:
|
|
| 85 |
model_path=model_path,
|
| 86 |
audio_path=self.model_dir,
|
| 87 |
result_path=self.model_dir,
|
| 88 |
-
device=
|
| 89 |
process_method="MDX-Net",
|
| 90 |
# keep base_dir and model_dir the same (paths under `pretrained_models`)
|
| 91 |
base_dir=self.model_dir,
|
| 92 |
**configs,
|
| 93 |
)
|
| 94 |
|
| 95 |
-
uvr5_model = Inference(model_data,
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
orig_is_available = _torch.cuda.is_available
|
| 101 |
-
_torch.cuda.is_available = lambda: False
|
| 102 |
-
try:
|
| 103 |
-
uvr5_model.load_model(model_path, 1)
|
| 104 |
-
finally:
|
| 105 |
-
_torch.cuda.is_available = orig_is_available
|
| 106 |
-
else:
|
| 107 |
-
uvr5_model.load_model(model_path, 1)
|
| 108 |
-
|
| 109 |
-
self.model = uvr5_model
|
| 110 |
-
self.device = device
|
| 111 |
return self.model
|
| 112 |
|
| 113 |
def denoise(self, audio_info):
|
| 114 |
print("denoise UVR5: ", audio_info)
|
| 115 |
-
# On Spaces, force CPU; locally prefer CUDA if available.
|
| 116 |
-
if IS_SPACES:
|
| 117 |
-
dev = "cpu"
|
| 118 |
-
else:
|
| 119 |
-
dev = "cuda" if torch.cuda.is_available() else "cpu"
|
| 120 |
-
model = self.load_model(device=dev)
|
| 121 |
-
|
| 122 |
input_audio = load_wav(audio_info, sr=44100, channel=2)
|
| 123 |
-
output_audio = model.demix_base({0: input_audio.squeeze()}, is_match_mix=False, device=
|
| 124 |
return output_audio.squeeze().T.cpu().numpy(), 44100
|
| 125 |
|
| 126 |
|
|
@@ -193,7 +162,6 @@ def get_checkpoints_project(project_name=None, is_gradio=True):
|
|
| 193 |
for f in files_checkpoints
|
| 194 |
if "pretrained_" not in os.path.basename(f) and "model_last.pt" not in os.path.basename(f)
|
| 195 |
]
|
| 196 |
-
last_checkpoint = [f for f in files_checkpoints if "model_last.pt" in os.path.basename(f)]
|
| 197 |
|
| 198 |
# Sort regular checkpoints by number
|
| 199 |
try:
|
|
@@ -204,7 +172,7 @@ def get_checkpoints_project(project_name=None, is_gradio=True):
|
|
| 204 |
regular_checkpoints = sorted(regular_checkpoints)
|
| 205 |
|
| 206 |
# Combine in order: pretrained, regular, last
|
| 207 |
-
files_checkpoints = pretrained_checkpoints + regular_checkpoints
|
| 208 |
|
| 209 |
select_checkpoint = None if not files_checkpoints else files_checkpoints[-1]
|
| 210 |
|
|
@@ -235,13 +203,13 @@ def get_available_projects():
|
|
| 235 |
print("project_list:", project_list)
|
| 236 |
return project_list
|
| 237 |
|
| 238 |
-
@spaces.GPU
|
| 239 |
@torch.no_grad()
|
| 240 |
@torch.inference_mode()
|
| 241 |
def infer(
|
| 242 |
project, file_checkpoint, exp_name, ref_text, ref_audio, denoise_audio, gen_text, nfe_step, use_ema, separate_langs, frontend, speed, cfg_strength, use_acc_grl, ref_ratio, no_ref_audio, sway_sampling_coef, use_prosody_encoder, seed
|
| 243 |
):
|
| 244 |
-
global
|
| 245 |
|
| 246 |
# Resolve checkpoint path (local or HF URL)
|
| 247 |
ckpt_path = file_checkpoint
|
|
@@ -260,52 +228,40 @@ def infer(
|
|
| 260 |
if denoise_audio:
|
| 261 |
ref_audio = denoise_audio
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
if last_checkpoint != ckpt_resolved or last_device != device_test or last_ema != use_ema or tts_api is None:
|
| 266 |
-
if last_checkpoint != ckpt_resolved:
|
| 267 |
-
last_checkpoint = ckpt_resolved
|
| 268 |
-
|
| 269 |
-
if last_device != device_test:
|
| 270 |
-
last_device = device_test
|
| 271 |
-
|
| 272 |
-
if last_ema != use_ema:
|
| 273 |
-
last_ema = use_ema
|
| 274 |
-
|
| 275 |
-
# Automatically enable prosody encoder when using the prosody checkpoint
|
| 276 |
-
use_prosody_encoder = True if "prosody" in str(ckpt_resolved) else False
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
|
| 308 |
-
|
| 309 |
|
| 310 |
if seed == -1: # -1 used for random
|
| 311 |
seed = None
|
|
|
|
| 16 |
|
| 17 |
from lemas_tts.api import TTS, PRETRAINED_ROOT, CKPTS_ROOT
|
| 18 |
|
| 19 |
+
device = (
|
| 20 |
+
"cuda"
|
| 21 |
+
if torch.cuda.is_available()
|
| 22 |
+
else "xpu"
|
| 23 |
+
if torch.xpu.is_available()
|
| 24 |
+
else "mps"
|
| 25 |
+
if torch.backends.mps.is_available()
|
| 26 |
+
else "cpu"
|
| 27 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
REPO_ROOT = Path(__file__).resolve().parent
|
| 30 |
|
|
|
|
| 58 |
sys.path.append(self.code_dir)
|
| 59 |
|
| 60 |
# Reuse an already-loaded model if it matches the requested device.
|
| 61 |
+
if self.model is not None:
|
| 62 |
return self.model
|
| 63 |
|
| 64 |
from multiprocess_cuda_infer import ModelData, Inference
|
|
|
|
| 71 |
model_path=model_path,
|
| 72 |
audio_path=self.model_dir,
|
| 73 |
result_path=self.model_dir,
|
| 74 |
+
device="cpu",
|
| 75 |
process_method="MDX-Net",
|
| 76 |
# keep base_dir and model_dir the same (paths under `pretrained_models`)
|
| 77 |
base_dir=self.model_dir,
|
| 78 |
**configs,
|
| 79 |
)
|
| 80 |
|
| 81 |
+
uvr5_model = Inference(model_data, "cpu")
|
| 82 |
+
uvr5_model.load_model(model_path, 1)
|
| 83 |
+
|
| 84 |
+
self.model = uvr5_model.load_model(device="cpu")
|
| 85 |
+
self.device = "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
return self.model
|
| 87 |
|
| 88 |
def denoise(self, audio_info):
|
| 89 |
print("denoise UVR5: ", audio_info)
|
| 90 |
+
# # On Spaces, force CPU; locally prefer CUDA if available.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
input_audio = load_wav(audio_info, sr=44100, channel=2)
|
| 92 |
+
output_audio = self.model.demix_base({0: input_audio.squeeze()}, is_match_mix=False, device="cpu")
|
| 93 |
return output_audio.squeeze().T.cpu().numpy(), 44100
|
| 94 |
|
| 95 |
|
|
|
|
| 162 |
for f in files_checkpoints
|
| 163 |
if "pretrained_" not in os.path.basename(f) and "model_last.pt" not in os.path.basename(f)
|
| 164 |
]
|
|
|
|
| 165 |
|
| 166 |
# Sort regular checkpoints by number
|
| 167 |
try:
|
|
|
|
| 172 |
regular_checkpoints = sorted(regular_checkpoints)
|
| 173 |
|
| 174 |
# Combine in order: pretrained, regular, last
|
| 175 |
+
files_checkpoints = pretrained_checkpoints + regular_checkpoints
|
| 176 |
|
| 177 |
select_checkpoint = None if not files_checkpoints else files_checkpoints[-1]
|
| 178 |
|
|
|
|
| 203 |
print("project_list:", project_list)
|
| 204 |
return project_list
|
| 205 |
|
| 206 |
+
@spaces.GPU
|
| 207 |
@torch.no_grad()
|
| 208 |
@torch.inference_mode()
|
| 209 |
def infer(
|
| 210 |
project, file_checkpoint, exp_name, ref_text, ref_audio, denoise_audio, gen_text, nfe_step, use_ema, separate_langs, frontend, speed, cfg_strength, use_acc_grl, ref_ratio, no_ref_audio, sway_sampling_coef, use_prosody_encoder, seed
|
| 211 |
):
|
| 212 |
+
global tts_api, last_ema
|
| 213 |
|
| 214 |
# Resolve checkpoint path (local or HF URL)
|
| 215 |
ckpt_path = file_checkpoint
|
|
|
|
| 228 |
if denoise_audio:
|
| 229 |
ref_audio = denoise_audio
|
| 230 |
|
| 231 |
+
# Automatically enable prosody encoder when using the prosody checkpoint
|
| 232 |
+
use_prosody_encoder = True if "prosody" in str(ckpt_resolved) else False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
# Resolve vocab file (local)
|
| 235 |
+
local_vocab = Path(PRETRAINED_ROOT) / "data" / project / "vocab.txt"
|
| 236 |
+
if not local_vocab.is_file():
|
| 237 |
+
return None, "Vocab file not found!", ""
|
| 238 |
+
vocab_file = str(local_vocab)
|
| 239 |
|
| 240 |
+
# Resolve prosody encoder config & weights (local)
|
| 241 |
+
local_prosody_cfg = Path(CKPTS_ROOT) / "prosody_encoder" / "pretssel_cfg.json"
|
| 242 |
+
local_prosody_ckpt = Path(CKPTS_ROOT) / "prosody_encoder" / "prosody_encoder_UnitY2.pt"
|
| 243 |
+
if not local_prosody_cfg.is_file() or not local_prosody_ckpt.is_file():
|
| 244 |
+
return None, "Prosody encoder files not found!", ""
|
| 245 |
+
prosody_cfg_path = str(local_prosody_cfg)
|
| 246 |
+
prosody_ckpt_path = str(local_prosody_ckpt)
|
| 247 |
|
| 248 |
+
try:
|
| 249 |
+
tts_api = TTS(
|
| 250 |
+
model=exp_name,
|
| 251 |
+
ckpt_file=ckpt_resolved,
|
| 252 |
+
vocab_file=vocab_file,
|
| 253 |
+
device="cuda",
|
| 254 |
+
use_ema=use_ema,
|
| 255 |
+
frontend=frontend,
|
| 256 |
+
use_prosody_encoder=use_prosody_encoder,
|
| 257 |
+
prosody_cfg_path=prosody_cfg_path,
|
| 258 |
+
prosody_ckpt_path=prosody_ckpt_path,
|
| 259 |
+
)
|
| 260 |
+
except Exception as e:
|
| 261 |
+
traceback.print_exc()
|
| 262 |
+
return None, f"Error loading model: {str(e)}", ""
|
| 263 |
|
| 264 |
+
print("Model loaded >>", file_checkpoint, use_ema)
|
| 265 |
|
| 266 |
if seed == -1: # -1 used for random
|
| 267 |
seed = None
|