Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import gradio as gr | |
from PIL import Image | |
import torchvision.transforms as transforms | |
norm_layer = nn.InstanceNorm2d | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_features): | |
super(ResidualBlock, self).__init__() | |
conv_block = [ nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features), | |
nn.ReLU(inplace=True), | |
nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features) | |
] | |
self.conv_block = nn.Sequential(*conv_block) | |
def forward(self, x): | |
return x + self.conv_block(x) | |
class Generator(nn.Module): | |
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): | |
super(Generator, self).__init__() | |
# Initial convolution block | |
model0 = [ nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, 64, 7), | |
norm_layer(64), | |
nn.ReLU(inplace=True) ] | |
self.model0 = nn.Sequential(*model0) | |
# Downsampling | |
model1 = [] | |
in_features = 64 | |
out_features = in_features*2 | |
for _ in range(2): | |
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) ] | |
in_features = out_features | |
out_features = in_features*2 | |
self.model1 = nn.Sequential(*model1) | |
model2 = [] | |
# Residual blocks | |
for _ in range(n_residual_blocks): | |
model2 += [ResidualBlock(in_features)] | |
self.model2 = nn.Sequential(*model2) | |
# Upsampling | |
model3 = [] | |
out_features = in_features//2 | |
for _ in range(2): | |
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) ] | |
in_features = out_features | |
out_features = in_features//2 | |
self.model3 = nn.Sequential(*model3) | |
# Output layer | |
model4 = [ nn.ReflectionPad2d(3), | |
nn.Conv2d(64, output_nc, 7)] | |
if sigmoid: | |
model4 += [nn.Sigmoid()] | |
self.model4 = nn.Sequential(*model4) | |
def forward(self, x, cond=None): | |
out = self.model0(x) | |
out = self.model1(out) | |
out = self.model2(out) | |
out = self.model3(out) | |
out = self.model4(out) | |
return out | |
model1 = Generator(3, 1, 3) | |
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu'))) | |
model1.eval() | |
model2 = Generator(3, 1, 3) | |
model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu'))) | |
model2.eval() | |
def predict(input_img, ver): | |
input_img = Image.open(input_img) | |
transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()]) | |
input_img = transform(input_img) | |
input_img = torch.unsqueeze(input_img, 0) | |
drawing = 0 | |
with torch.no_grad(): | |
if ver == 'Simple Lines': | |
drawing = model2(input_img)[0].detach() | |
else: | |
drawing = model1(input_img)[0].detach() | |
drawing = transforms.ToPILImage()(drawing) | |
return drawing | |
title="Image to Line Drawings - Complex and Simple Portraits and Landscapes" | |
description="Image to Line Drawing" | |
# article = "<p style='text-align: center'></p>" | |
examples=[ | |
['pic/01.jpg', 'Simple Lines'], ['pic/02.jpg', 'Simple Lines'] | |
] | |
iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'), | |
gr.inputs.Radio(['Complex Lines','Simple Lines'], type="value", default='Simple Lines', label='version')], | |
gr.outputs.Image(type="pil"), title=title,description=description,examples=examples) | |
iface.launch() |