55
Browse files- app/app.py +2 -2
- app/config/eval_gpt2.py +8 -0
- app/config/eval_gpt2_large.py +8 -0
- app/config/eval_gpt2_medium.py +8 -0
- app/config/eval_gpt2_xl.py +8 -0
- app/config/finetune_shakespeare.py +25 -0
- app/config/train_gpt2.py +25 -0
- app/config/train_shakespeare_char.py +37 -0
- app/data/openwebtext/prepare.py +80 -0
- app/data/openwebtext/readme.md +15 -0
- app/data/shakespeare/prepare.py +33 -0
- app/data/shakespeare/readme.md +9 -0
- app/data/shakespeare_char/.DS_Store +0 -0
- app/data/shakespeare_char/input.txt +0 -0
- app/data/shakespeare_char/meta.pkl +0 -0
- app/data/shakespeare_char/prepare.py +68 -0
- app/data/shakespeare_char/readme.md +9 -0
- app/train.py +333 -0
app/app.py
CHANGED
@@ -19,7 +19,7 @@ def prepare_data():
|
|
19 |
st.title("Sortie de la commande Python")
|
20 |
|
21 |
# Commande Python à exécuter
|
22 |
-
command = "python3
|
23 |
|
24 |
# Sorties de la commmande
|
25 |
stdout, stderr = run_command(command)
|
@@ -43,7 +43,7 @@ def train_model():
|
|
43 |
st.title("Sortie de la commande Python")
|
44 |
|
45 |
# Commande Python à exécuter
|
46 |
-
command = "python3
|
47 |
|
48 |
# Sorties de la commande
|
49 |
stdout, stderr = run_command(command)
|
|
|
19 |
st.title("Sortie de la commande Python")
|
20 |
|
21 |
# Commande Python à exécuter
|
22 |
+
command = "python3 data/shakespeare_char/prepare.py"
|
23 |
|
24 |
# Sorties de la commmande
|
25 |
stdout, stderr = run_command(command)
|
|
|
43 |
st.title("Sortie de la commande Python")
|
44 |
|
45 |
# Commande Python à exécuter
|
46 |
+
command = "python3 train.py config/train_shakespeare_char.py --device=cpu --compile=False --eval_iters=20 --log_interval=1 --block_size=64 --batch_size=12 --n_layer=4 --n_head=4 --n_embd=128 --max_iters=2000 --lr_decay_iters=2000 --dropout=0.0"
|
47 |
|
48 |
# Sorties de la commande
|
49 |
stdout, stderr = run_command(command)
|
app/config/eval_gpt2.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# evaluate the base gpt2
|
2 |
+
# n_layer=12, n_head=12, n_embd=768
|
3 |
+
# 124M parameters
|
4 |
+
batch_size = 8
|
5 |
+
eval_iters = 500 # use more iterations to get good estimate
|
6 |
+
eval_only = True
|
7 |
+
wandb_log = False
|
8 |
+
init_from = 'gpt2'
|
app/config/eval_gpt2_large.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# evaluate the base gpt2
|
2 |
+
# n_layer=36, n_head=20, n_embd=1280
|
3 |
+
# 774M parameters
|
4 |
+
batch_size = 8
|
5 |
+
eval_iters = 500 # use more iterations to get good estimate
|
6 |
+
eval_only = True
|
7 |
+
wandb_log = False
|
8 |
+
init_from = 'gpt2-large'
|
app/config/eval_gpt2_medium.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# evaluate the base gpt2
|
2 |
+
# n_layer=24, n_head=16, n_embd=1024
|
3 |
+
# 350M parameters
|
4 |
+
batch_size = 8
|
5 |
+
eval_iters = 500 # use more iterations to get good estimate
|
6 |
+
eval_only = True
|
7 |
+
wandb_log = False
|
8 |
+
init_from = 'gpt2-medium'
|
app/config/eval_gpt2_xl.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# evaluate the base gpt2
|
2 |
+
# n_layer=48, n_head=25, n_embd=1600
|
3 |
+
# 1558M parameters
|
4 |
+
batch_size = 8
|
5 |
+
eval_iters = 500 # use more iterations to get good estimate
|
6 |
+
eval_only = True
|
7 |
+
wandb_log = False
|
8 |
+
init_from = 'gpt2-xl'
|
app/config/finetune_shakespeare.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
out_dir = 'out-shakespeare'
|
4 |
+
eval_interval = 5
|
5 |
+
eval_iters = 40
|
6 |
+
wandb_log = False # feel free to turn on
|
7 |
+
wandb_project = 'shakespeare'
|
8 |
+
wandb_run_name = 'ft-' + str(time.time())
|
9 |
+
|
10 |
+
dataset = 'shakespeare'
|
11 |
+
init_from = 'gpt2-xl' # this is the largest GPT-2 model
|
12 |
+
|
13 |
+
# only save checkpoints if the validation loss improves
|
14 |
+
always_save_checkpoint = False
|
15 |
+
|
16 |
+
# the number of examples per iter:
|
17 |
+
# 1 batch_size * 32 grad_accum * 1024 tokens = 32,768 tokens/iter
|
18 |
+
# shakespeare has 301,966 tokens, so 1 epoch ~= 9.2 iters
|
19 |
+
batch_size = 1
|
20 |
+
gradient_accumulation_steps = 32
|
21 |
+
max_iters = 20
|
22 |
+
|
23 |
+
# finetune at constant LR
|
24 |
+
learning_rate = 3e-5
|
25 |
+
decay_lr = False
|
app/config/train_gpt2.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# config for training GPT-2 (124M) down to very nice loss of ~2.85 on 1 node of 8X A100 40GB
|
2 |
+
# launch as the following (e.g. in a screen session) and wait ~5 days:
|
3 |
+
# $ torchrun --standalone --nproc_per_node=8 train.py config/train_gpt2.py
|
4 |
+
|
5 |
+
wandb_log = True
|
6 |
+
wandb_project = 'owt'
|
7 |
+
wandb_run_name='gpt2-124M'
|
8 |
+
|
9 |
+
# these make the total batch size be ~0.5M
|
10 |
+
# 12 batch size * 1024 block size * 5 gradaccum * 8 GPUs = 491,520
|
11 |
+
batch_size = 12
|
12 |
+
block_size = 1024
|
13 |
+
gradient_accumulation_steps = 5 * 8
|
14 |
+
|
15 |
+
# this makes total number of tokens be 300B
|
16 |
+
max_iters = 600000
|
17 |
+
lr_decay_iters = 600000
|
18 |
+
|
19 |
+
# eval stuff
|
20 |
+
eval_interval = 1000
|
21 |
+
eval_iters = 200
|
22 |
+
log_interval = 10
|
23 |
+
|
24 |
+
# weight decay
|
25 |
+
weight_decay = 1e-1
|
app/config/train_shakespeare_char.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# train a miniature character-level shakespeare model
|
2 |
+
# good for debugging and playing on macbooks and such
|
3 |
+
|
4 |
+
out_dir = 'out-shakespeare-char'
|
5 |
+
eval_interval = 250 # keep frequent because we'll overfit
|
6 |
+
eval_iters = 200
|
7 |
+
log_interval = 10 # don't print too too often
|
8 |
+
|
9 |
+
# we expect to overfit on this small dataset, so only save when val improves
|
10 |
+
always_save_checkpoint = False
|
11 |
+
|
12 |
+
wandb_log = False # override via command line if you like
|
13 |
+
wandb_project = 'shakespeare-char'
|
14 |
+
wandb_run_name = 'mini-gpt'
|
15 |
+
|
16 |
+
dataset = 'shakespeare_char'
|
17 |
+
gradient_accumulation_steps = 1
|
18 |
+
batch_size = 64
|
19 |
+
block_size = 256 # context of up to 256 previous characters
|
20 |
+
|
21 |
+
# baby GPT model :)
|
22 |
+
n_layer = 6
|
23 |
+
n_head = 6
|
24 |
+
n_embd = 384
|
25 |
+
dropout = 0.2
|
26 |
+
|
27 |
+
learning_rate = 1e-3 # with baby networks can afford to go a bit higher
|
28 |
+
max_iters = 5000
|
29 |
+
lr_decay_iters = 5000 # make equal to max_iters usually
|
30 |
+
min_lr = 1e-4 # learning_rate / 10 usually
|
31 |
+
beta2 = 0.99 # make a bit bigger because number of tokens per iter is small
|
32 |
+
|
33 |
+
warmup_iters = 100 # not super necessary potentially
|
34 |
+
|
35 |
+
# on macbook also add
|
36 |
+
# device = 'cpu' # run on cpu only
|
37 |
+
# compile = False # do not torch compile the model
|
app/data/openwebtext/prepare.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# saves the openwebtext dataset to a binary file for training. following was helpful:
|
2 |
+
# https://github.com/HazyResearch/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py
|
3 |
+
|
4 |
+
import os
|
5 |
+
from tqdm import tqdm
|
6 |
+
import numpy as np
|
7 |
+
import tiktoken
|
8 |
+
from datasets import load_dataset # huggingface datasets
|
9 |
+
|
10 |
+
# number of workers in .map() call
|
11 |
+
# good number to use is ~order number of cpu cores // 2
|
12 |
+
num_proc = 8
|
13 |
+
|
14 |
+
# number of workers in load_dataset() call
|
15 |
+
# best number might be different from num_proc above as it also depends on NW speed.
|
16 |
+
# it is better than 1 usually though
|
17 |
+
num_proc_load_dataset = num_proc
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
# takes 54GB in huggingface .cache dir, about 8M documents (8,013,769)
|
21 |
+
dataset = load_dataset("openwebtext", num_proc=num_proc_load_dataset)
|
22 |
+
|
23 |
+
# owt by default only contains the 'train' split, so create a test split
|
24 |
+
split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
|
25 |
+
split_dataset['val'] = split_dataset.pop('test') # rename the test split to val
|
26 |
+
|
27 |
+
# this results in:
|
28 |
+
# >>> split_dataset
|
29 |
+
# DatasetDict({
|
30 |
+
# train: Dataset({
|
31 |
+
# features: ['text'],
|
32 |
+
# num_rows: 8009762
|
33 |
+
# })
|
34 |
+
# val: Dataset({
|
35 |
+
# features: ['text'],
|
36 |
+
# num_rows: 4007
|
37 |
+
# })
|
38 |
+
# })
|
39 |
+
|
40 |
+
# we now want to tokenize the dataset. first define the encoding function (gpt2 bpe)
|
41 |
+
enc = tiktoken.get_encoding("gpt2")
|
42 |
+
def process(example):
|
43 |
+
ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
|
44 |
+
ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
|
45 |
+
# note: I think eot should be prepended not appended... hmm. it's called "eot" though...
|
46 |
+
out = {'ids': ids, 'len': len(ids)}
|
47 |
+
return out
|
48 |
+
|
49 |
+
# tokenize the dataset
|
50 |
+
tokenized = split_dataset.map(
|
51 |
+
process,
|
52 |
+
remove_columns=['text'],
|
53 |
+
desc="tokenizing the splits",
|
54 |
+
num_proc=num_proc,
|
55 |
+
)
|
56 |
+
|
57 |
+
# concatenate all the ids in each dataset into one large file we can use for training
|
58 |
+
for split, dset in tokenized.items():
|
59 |
+
arr_len = np.sum(dset['len'], dtype=np.uint64)
|
60 |
+
filename = os.path.join(os.path.dirname(__file__), f'{split}.bin')
|
61 |
+
dtype = np.uint16 # (can do since enc.max_token_value == 50256 is < 2**16)
|
62 |
+
arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
|
63 |
+
total_batches = 1024
|
64 |
+
|
65 |
+
idx = 0
|
66 |
+
for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
|
67 |
+
# Batch together samples for faster write
|
68 |
+
batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
|
69 |
+
arr_batch = np.concatenate(batch['ids'])
|
70 |
+
# Write into mmap
|
71 |
+
arr[idx : idx + len(arr_batch)] = arr_batch
|
72 |
+
idx += len(arr_batch)
|
73 |
+
arr.flush()
|
74 |
+
|
75 |
+
# train.bin is ~17GB, val.bin ~8.5MB
|
76 |
+
# train has ~9B tokens (9,035,582,198)
|
77 |
+
# val has ~4M tokens (4,434,897)
|
78 |
+
|
79 |
+
# to read the bin files later, e.g. with numpy:
|
80 |
+
# m = np.memmap('train.bin', dtype=np.uint16, mode='r')
|
app/data/openwebtext/readme.md
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## openwebtext dataset
|
3 |
+
|
4 |
+
after running `prepare.py` (preprocess) we get:
|
5 |
+
|
6 |
+
- train.bin is ~17GB, val.bin ~8.5MB
|
7 |
+
- train has ~9B tokens (9,035,582,198)
|
8 |
+
- val has ~4M tokens (4,434,897)
|
9 |
+
|
10 |
+
this came from 8,013,769 documents in total.
|
11 |
+
|
12 |
+
references:
|
13 |
+
|
14 |
+
- OpenAI's WebText dataset is discussed in [GPT-2 paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
|
15 |
+
- [OpenWebText](https://skylion007.github.io/OpenWebTextCorpus/) dataset
|
app/data/shakespeare/prepare.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import tiktoken
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# download the tiny shakespeare dataset
|
7 |
+
input_file_path = os.path.join(os.path.dirname(__file__), 'input.txt')
|
8 |
+
if not os.path.exists(input_file_path):
|
9 |
+
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
|
10 |
+
with open(input_file_path, 'w') as f:
|
11 |
+
f.write(requests.get(data_url).text)
|
12 |
+
|
13 |
+
with open(input_file_path, 'r') as f:
|
14 |
+
data = f.read()
|
15 |
+
n = len(data)
|
16 |
+
train_data = data[:int(n*0.9)]
|
17 |
+
val_data = data[int(n*0.9):]
|
18 |
+
|
19 |
+
# encode with tiktoken gpt2 bpe
|
20 |
+
enc = tiktoken.get_encoding("gpt2")
|
21 |
+
train_ids = enc.encode_ordinary(train_data)
|
22 |
+
val_ids = enc.encode_ordinary(val_data)
|
23 |
+
print(f"train has {len(train_ids):,} tokens")
|
24 |
+
print(f"val has {len(val_ids):,} tokens")
|
25 |
+
|
26 |
+
# export to bin files
|
27 |
+
train_ids = np.array(train_ids, dtype=np.uint16)
|
28 |
+
val_ids = np.array(val_ids, dtype=np.uint16)
|
29 |
+
train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin'))
|
30 |
+
val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin'))
|
31 |
+
|
32 |
+
# train.bin has 301,966 tokens
|
33 |
+
# val.bin has 36,059 tokens
|
app/data/shakespeare/readme.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# tiny shakespeare
|
3 |
+
|
4 |
+
Tiny shakespeare, of the good old char-rnn fame :)
|
5 |
+
|
6 |
+
After running `prepare.py`:
|
7 |
+
|
8 |
+
- train.bin has 301,966 tokens
|
9 |
+
- val.bin has 36,059 tokens
|
app/data/shakespeare_char/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app/data/shakespeare_char/input.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app/data/shakespeare_char/meta.pkl
ADDED
Binary file (703 Bytes). View file
|
|
app/data/shakespeare_char/prepare.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Prepare the Shakespeare dataset for character-level language modeling.
|
3 |
+
So instead of encoding with GPT-2 BPE tokens, we just map characters to ints.
|
4 |
+
Will save train.bin, val.bin containing the ids, and meta.pkl containing the
|
5 |
+
encoder and decoder and some other related info.
|
6 |
+
"""
|
7 |
+
import os
|
8 |
+
import pickle
|
9 |
+
import requests
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
# download the tiny shakespeare dataset
|
13 |
+
input_file_path = os.path.join(os.path.dirname(__file__), 'input.txt')
|
14 |
+
if not os.path.exists(input_file_path):
|
15 |
+
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
|
16 |
+
with open(input_file_path, 'w') as f:
|
17 |
+
f.write(requests.get(data_url).text)
|
18 |
+
|
19 |
+
with open(input_file_path, 'r') as f:
|
20 |
+
data = f.read()
|
21 |
+
print(f"length of dataset in characters: {len(data):,}")
|
22 |
+
|
23 |
+
# get all the unique characters that occur in this text
|
24 |
+
chars = sorted(list(set(data)))
|
25 |
+
vocab_size = len(chars)
|
26 |
+
print("all the unique characters:", ''.join(chars))
|
27 |
+
print(f"vocab size: {vocab_size:,}")
|
28 |
+
|
29 |
+
# create a mapping from characters to integers
|
30 |
+
stoi = { ch:i for i,ch in enumerate(chars) }
|
31 |
+
itos = { i:ch for i,ch in enumerate(chars) }
|
32 |
+
def encode(s):
|
33 |
+
return [stoi[c] for c in s] # encoder: take a string, output a list of integers
|
34 |
+
def decode(l):
|
35 |
+
return ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
|
36 |
+
|
37 |
+
# create the train and test splits
|
38 |
+
n = len(data)
|
39 |
+
train_data = data[:int(n*0.9)]
|
40 |
+
val_data = data[int(n*0.9):]
|
41 |
+
|
42 |
+
# encode both to integers
|
43 |
+
train_ids = encode(train_data)
|
44 |
+
val_ids = encode(val_data)
|
45 |
+
print(f"train has {len(train_ids):,} tokens")
|
46 |
+
print(f"val has {len(val_ids):,} tokens")
|
47 |
+
|
48 |
+
# export to bin files
|
49 |
+
train_ids = np.array(train_ids, dtype=np.uint16)
|
50 |
+
val_ids = np.array(val_ids, dtype=np.uint16)
|
51 |
+
train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin'))
|
52 |
+
val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin'))
|
53 |
+
|
54 |
+
# save the meta information as well, to help us encode/decode later
|
55 |
+
meta = {
|
56 |
+
'vocab_size': vocab_size,
|
57 |
+
'itos': itos,
|
58 |
+
'stoi': stoi,
|
59 |
+
}
|
60 |
+
with open(os.path.join(os.path.dirname(__file__), 'meta.pkl'), 'wb') as f:
|
61 |
+
pickle.dump(meta, f)
|
62 |
+
|
63 |
+
# length of dataset in characters: 1115394
|
64 |
+
# all the unique characters:
|
65 |
+
# !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
|
66 |
+
# vocab size: 65
|
67 |
+
# train has 1003854 tokens
|
68 |
+
# val has 111540 tokens
|
app/data/shakespeare_char/readme.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# tiny shakespeare, character-level
|
3 |
+
|
4 |
+
Tiny shakespeare, of the good old char-rnn fame :) Treated on character-level.
|
5 |
+
|
6 |
+
After running `prepare.py`:
|
7 |
+
|
8 |
+
- train.bin has 1,003,854 tokens
|
9 |
+
- val.bin has 111,540 tokens
|
app/train.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This training script can be run both on a single gpu in debug mode,
|
3 |
+
and also in a larger training run with distributed data parallel (ddp).
|
4 |
+
|
5 |
+
To run on a single GPU, example:
|
6 |
+
$ python train.py --batch_size=32 --compile=False
|
7 |
+
|
8 |
+
To run with DDP on 4 gpus on 1 node, example:
|
9 |
+
$ torchrun --standalone --nproc_per_node=4 train.py
|
10 |
+
|
11 |
+
To run with DDP on 4 gpus across 2 nodes, example:
|
12 |
+
- Run on the first (master) node with example IP 123.456.123.456:
|
13 |
+
$ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=123.456.123.456 --master_port=1234 train.py
|
14 |
+
- Run on the worker node:
|
15 |
+
$ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=123.456.123.456 --master_port=1234 train.py
|
16 |
+
(If your cluster does not have Infiniband interconnect prepend NCCL_IB_DISABLE=1)
|
17 |
+
"""
|
18 |
+
|
19 |
+
import os
|
20 |
+
import time
|
21 |
+
import math
|
22 |
+
import pickle
|
23 |
+
from contextlib import nullcontext
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
28 |
+
from torch.distributed import init_process_group, destroy_process_group
|
29 |
+
|
30 |
+
from model import GPTConfig, GPT
|
31 |
+
|
32 |
+
# -----------------------------------------------------------------------------
|
33 |
+
# default config values designed to train a gpt2 (124M) on OpenWebText
|
34 |
+
# I/O
|
35 |
+
out_dir = 'out'
|
36 |
+
eval_interval = 2000
|
37 |
+
log_interval = 1
|
38 |
+
eval_iters = 200
|
39 |
+
eval_only = False # if True, script exits right after the first eval
|
40 |
+
always_save_checkpoint = True # if True, always save a checkpoint after each eval
|
41 |
+
init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*'
|
42 |
+
# wandb logging
|
43 |
+
wandb_log = False # disabled by default
|
44 |
+
wandb_project = 'owt'
|
45 |
+
wandb_run_name = 'gpt2' # 'run' + str(time.time())
|
46 |
+
# data
|
47 |
+
dataset = 'openwebtext'
|
48 |
+
gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes
|
49 |
+
batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size
|
50 |
+
block_size = 1024
|
51 |
+
# model
|
52 |
+
n_layer = 12
|
53 |
+
n_head = 12
|
54 |
+
n_embd = 768
|
55 |
+
dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
|
56 |
+
bias = False # do we use bias inside LayerNorm and Linear layers?
|
57 |
+
# adamw optimizer
|
58 |
+
learning_rate = 6e-4 # max learning rate
|
59 |
+
max_iters = 600000 # total number of training iterations
|
60 |
+
weight_decay = 1e-1
|
61 |
+
beta1 = 0.9
|
62 |
+
beta2 = 0.95
|
63 |
+
grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
|
64 |
+
# learning rate decay settings
|
65 |
+
decay_lr = True # whether to decay the learning rate
|
66 |
+
warmup_iters = 2000 # how many steps to warm up for
|
67 |
+
lr_decay_iters = 600000 # should be ~= max_iters per Chinchilla
|
68 |
+
min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
|
69 |
+
# DDP settings
|
70 |
+
backend = 'nccl' # 'nccl', 'gloo', etc.
|
71 |
+
# system
|
72 |
+
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
|
73 |
+
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
|
74 |
+
compile = True # use PyTorch 2.0 to compile the model to be faster
|
75 |
+
# -----------------------------------------------------------------------------
|
76 |
+
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
77 |
+
exec(open('configurator.py').read()) # overrides from command line or config file
|
78 |
+
config = {k: globals()[k] for k in config_keys} # will be useful for logging
|
79 |
+
# -----------------------------------------------------------------------------
|
80 |
+
|
81 |
+
# various inits, derived attributes, I/O setup
|
82 |
+
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
|
83 |
+
if ddp:
|
84 |
+
init_process_group(backend=backend)
|
85 |
+
ddp_rank = int(os.environ['RANK'])
|
86 |
+
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
87 |
+
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
88 |
+
device = f'cuda:{ddp_local_rank}'
|
89 |
+
torch.cuda.set_device(device)
|
90 |
+
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
|
91 |
+
seed_offset = ddp_rank # each process gets a different seed
|
92 |
+
# world_size number of processes will be training simultaneously, so we can scale
|
93 |
+
# down the desired gradient accumulation iterations per process proportionally
|
94 |
+
assert gradient_accumulation_steps % ddp_world_size == 0
|
95 |
+
gradient_accumulation_steps //= ddp_world_size
|
96 |
+
else:
|
97 |
+
# if not ddp, we are running on a single gpu, and one process
|
98 |
+
master_process = True
|
99 |
+
seed_offset = 0
|
100 |
+
ddp_world_size = 1
|
101 |
+
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
|
102 |
+
print(f"tokens per iteration will be: {tokens_per_iter:,}")
|
103 |
+
|
104 |
+
if master_process:
|
105 |
+
os.makedirs(out_dir, exist_ok=True)
|
106 |
+
torch.manual_seed(1337 + seed_offset)
|
107 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
108 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
109 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
110 |
+
# note: float16 data type will automatically use a GradScaler
|
111 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
112 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
113 |
+
|
114 |
+
# poor man's data loader
|
115 |
+
data_dir = os.path.join('data', dataset)
|
116 |
+
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
|
117 |
+
val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
|
118 |
+
def get_batch(split):
|
119 |
+
data = train_data if split == 'train' else val_data
|
120 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
121 |
+
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
|
122 |
+
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
|
123 |
+
if device_type == 'cuda':
|
124 |
+
# pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
|
125 |
+
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
126 |
+
else:
|
127 |
+
x, y = x.to(device), y.to(device)
|
128 |
+
return x, y
|
129 |
+
|
130 |
+
# init these up here, can override if init_from='resume' (i.e. from a checkpoint)
|
131 |
+
iter_num = 0
|
132 |
+
best_val_loss = 1e9
|
133 |
+
|
134 |
+
# attempt to derive vocab_size from the dataset
|
135 |
+
meta_path = os.path.join(data_dir, 'meta.pkl')
|
136 |
+
meta_vocab_size = None
|
137 |
+
if os.path.exists(meta_path):
|
138 |
+
with open(meta_path, 'rb') as f:
|
139 |
+
meta = pickle.load(f)
|
140 |
+
meta_vocab_size = meta['vocab_size']
|
141 |
+
print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")
|
142 |
+
|
143 |
+
# model init
|
144 |
+
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
|
145 |
+
bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line
|
146 |
+
if init_from == 'scratch':
|
147 |
+
# init a new model from scratch
|
148 |
+
print("Initializing a new model from scratch")
|
149 |
+
# determine the vocab size we'll use for from-scratch training
|
150 |
+
if meta_vocab_size is None:
|
151 |
+
print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
|
152 |
+
model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
|
153 |
+
gptconf = GPTConfig(**model_args)
|
154 |
+
model = GPT(gptconf)
|
155 |
+
elif init_from == 'resume':
|
156 |
+
print(f"Resuming training from {out_dir}")
|
157 |
+
# resume training from a checkpoint.
|
158 |
+
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
159 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
160 |
+
checkpoint_model_args = checkpoint['model_args']
|
161 |
+
# force these config attributes to be equal otherwise we can't even resume training
|
162 |
+
# the rest of the attributes (e.g. dropout) can stay as desired from command line
|
163 |
+
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
|
164 |
+
model_args[k] = checkpoint_model_args[k]
|
165 |
+
# create the model
|
166 |
+
gptconf = GPTConfig(**model_args)
|
167 |
+
model = GPT(gptconf)
|
168 |
+
state_dict = checkpoint['model']
|
169 |
+
# fix the keys of the state dictionary :(
|
170 |
+
# honestly no idea how checkpoints sometimes get this prefix, have to debug more
|
171 |
+
unwanted_prefix = '_orig_mod.'
|
172 |
+
for k,v in list(state_dict.items()):
|
173 |
+
if k.startswith(unwanted_prefix):
|
174 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
175 |
+
model.load_state_dict(state_dict)
|
176 |
+
iter_num = checkpoint['iter_num']
|
177 |
+
best_val_loss = checkpoint['best_val_loss']
|
178 |
+
elif init_from.startswith('gpt2'):
|
179 |
+
print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
|
180 |
+
# initialize from OpenAI GPT-2 weights
|
181 |
+
override_args = dict(dropout=dropout)
|
182 |
+
model = GPT.from_pretrained(init_from, override_args)
|
183 |
+
# read off the created config params, so we can store them into checkpoint correctly
|
184 |
+
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
|
185 |
+
model_args[k] = getattr(model.config, k)
|
186 |
+
# crop down the model block size if desired, using model surgery
|
187 |
+
if block_size < model.config.block_size:
|
188 |
+
model.crop_block_size(block_size)
|
189 |
+
model_args['block_size'] = block_size # so that the checkpoint will have the right value
|
190 |
+
model.to(device)
|
191 |
+
|
192 |
+
# initialize a GradScaler. If enabled=False scaler is a no-op
|
193 |
+
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
|
194 |
+
|
195 |
+
# optimizer
|
196 |
+
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
|
197 |
+
if init_from == 'resume':
|
198 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
199 |
+
checkpoint = None # free up memory
|
200 |
+
|
201 |
+
# compile the model
|
202 |
+
if compile:
|
203 |
+
print("compiling the model... (takes a ~minute)")
|
204 |
+
unoptimized_model = model
|
205 |
+
model = torch.compile(model) # requires PyTorch 2.0
|
206 |
+
|
207 |
+
# wrap model into DDP container
|
208 |
+
if ddp:
|
209 |
+
model = DDP(model, device_ids=[ddp_local_rank])
|
210 |
+
|
211 |
+
# helps estimate an arbitrarily accurate loss over either split using many batches
|
212 |
+
@torch.no_grad()
|
213 |
+
def estimate_loss():
|
214 |
+
out = {}
|
215 |
+
model.eval()
|
216 |
+
for split in ['train', 'val']:
|
217 |
+
losses = torch.zeros(eval_iters)
|
218 |
+
for k in range(eval_iters):
|
219 |
+
X, Y = get_batch(split)
|
220 |
+
with ctx:
|
221 |
+
logits, loss = model(X, Y)
|
222 |
+
losses[k] = loss.item()
|
223 |
+
out[split] = losses.mean()
|
224 |
+
model.train()
|
225 |
+
return out
|
226 |
+
|
227 |
+
# learning rate decay scheduler (cosine with warmup)
|
228 |
+
def get_lr(it):
|
229 |
+
# 1) linear warmup for warmup_iters steps
|
230 |
+
if it < warmup_iters:
|
231 |
+
return learning_rate * it / warmup_iters
|
232 |
+
# 2) if it > lr_decay_iters, return min learning rate
|
233 |
+
if it > lr_decay_iters:
|
234 |
+
return min_lr
|
235 |
+
# 3) in between, use cosine decay down to min learning rate
|
236 |
+
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
237 |
+
assert 0 <= decay_ratio <= 1
|
238 |
+
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
|
239 |
+
return min_lr + coeff * (learning_rate - min_lr)
|
240 |
+
|
241 |
+
# logging
|
242 |
+
if wandb_log and master_process:
|
243 |
+
import wandb
|
244 |
+
wandb.init(project=wandb_project, name=wandb_run_name, config=config)
|
245 |
+
|
246 |
+
# training loop
|
247 |
+
X, Y = get_batch('train') # fetch the very first batch
|
248 |
+
t0 = time.time()
|
249 |
+
local_iter_num = 0 # number of iterations in the lifetime of this process
|
250 |
+
raw_model = model.module if ddp else model # unwrap DDP container if needed
|
251 |
+
running_mfu = -1.0
|
252 |
+
while True:
|
253 |
+
|
254 |
+
# determine and set the learning rate for this iteration
|
255 |
+
lr = get_lr(iter_num) if decay_lr else learning_rate
|
256 |
+
for param_group in optimizer.param_groups:
|
257 |
+
param_group['lr'] = lr
|
258 |
+
|
259 |
+
# evaluate the loss on train/val sets and write checkpoints
|
260 |
+
if iter_num % eval_interval == 0 and master_process:
|
261 |
+
losses = estimate_loss()
|
262 |
+
print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
|
263 |
+
if wandb_log:
|
264 |
+
wandb.log({
|
265 |
+
"iter": iter_num,
|
266 |
+
"train/loss": losses['train'],
|
267 |
+
"val/loss": losses['val'],
|
268 |
+
"lr": lr,
|
269 |
+
"mfu": running_mfu*100, # convert to percentage
|
270 |
+
})
|
271 |
+
if losses['val'] < best_val_loss or always_save_checkpoint:
|
272 |
+
best_val_loss = losses['val']
|
273 |
+
if iter_num > 0:
|
274 |
+
checkpoint = {
|
275 |
+
'model': raw_model.state_dict(),
|
276 |
+
'optimizer': optimizer.state_dict(),
|
277 |
+
'model_args': model_args,
|
278 |
+
'iter_num': iter_num,
|
279 |
+
'best_val_loss': best_val_loss,
|
280 |
+
'config': config,
|
281 |
+
}
|
282 |
+
print(f"saving checkpoint to {out_dir}")
|
283 |
+
torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
|
284 |
+
if iter_num == 0 and eval_only:
|
285 |
+
break
|
286 |
+
|
287 |
+
# forward backward update, with optional gradient accumulation to simulate larger batch size
|
288 |
+
# and using the GradScaler if data type is float16
|
289 |
+
for micro_step in range(gradient_accumulation_steps):
|
290 |
+
if ddp:
|
291 |
+
# in DDP training we only need to sync gradients at the last micro step.
|
292 |
+
# the official way to do this is with model.no_sync() context manager, but
|
293 |
+
# I really dislike that this bloats the code and forces us to repeat code
|
294 |
+
# looking at the source of that context manager, it just toggles this variable
|
295 |
+
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
|
296 |
+
with ctx:
|
297 |
+
logits, loss = model(X, Y)
|
298 |
+
loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
|
299 |
+
# immediately async prefetch next batch while model is doing the forward pass on the GPU
|
300 |
+
X, Y = get_batch('train')
|
301 |
+
# backward pass, with gradient scaling if training in fp16
|
302 |
+
scaler.scale(loss).backward()
|
303 |
+
# clip the gradient
|
304 |
+
if grad_clip != 0.0:
|
305 |
+
scaler.unscale_(optimizer)
|
306 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
|
307 |
+
# step the optimizer and scaler if training in fp16
|
308 |
+
scaler.step(optimizer)
|
309 |
+
scaler.update()
|
310 |
+
# flush the gradients as soon as we can, no need for this memory anymore
|
311 |
+
optimizer.zero_grad(set_to_none=True)
|
312 |
+
|
313 |
+
# timing and logging
|
314 |
+
t1 = time.time()
|
315 |
+
dt = t1 - t0
|
316 |
+
t0 = t1
|
317 |
+
if iter_num % log_interval == 0 and master_process:
|
318 |
+
# get loss as float. note: this is a CPU-GPU sync point
|
319 |
+
# scale up to undo the division above, approximating the true total loss (exact would have been a sum)
|
320 |
+
lossf = loss.item() * gradient_accumulation_steps
|
321 |
+
if local_iter_num >= 5: # let the training loop settle a bit
|
322 |
+
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
|
323 |
+
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
|
324 |
+
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
|
325 |
+
iter_num += 1
|
326 |
+
local_iter_num += 1
|
327 |
+
|
328 |
+
# termination conditions
|
329 |
+
if iter_num > max_iters:
|
330 |
+
break
|
331 |
+
|
332 |
+
if ddp:
|
333 |
+
destroy_process_group()
|