one
Browse files- .DS_Store +0 -0
- LICENSE +21 -0
- __pycache__/model.cpython-310.pyc +0 -0
- assets/gpt2_124M_loss.png +0 -0
- assets/nanogpt.jpg +0 -0
- bench.py +117 -0
- config/eval_gpt2.py +8 -0
- config/eval_gpt2_large.py +8 -0
- config/eval_gpt2_medium.py +8 -0
- config/eval_gpt2_xl.py +8 -0
- config/finetune_shakespeare.py +25 -0
- config/train_gpt2.py +25 -0
- config/train_shakespeare_char.py +37 -0
- configurator.py +47 -0
- data/.DS_Store +0 -0
- data/openwebtext/prepare.py +80 -0
- data/openwebtext/readme.md +15 -0
- data/shakespeare/prepare.py +33 -0
- data/shakespeare/readme.md +9 -0
- data/shakespeare_char/.DS_Store +0 -0
- data/shakespeare_char/input.txt +0 -0
- data/shakespeare_char/meta.pkl +0 -0
- data/shakespeare_char/prepare.py +68 -0
- data/shakespeare_char/readme.md +9 -0
- model.py +330 -0
- out-shakespeare-char/.DS_Store +0 -0
- sample.py +89 -0
- scaling_laws.ipynb +0 -0
- train.py +333 -0
- transformer_sizing.ipynb +402 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 Andrej Karpathy
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
__pycache__/model.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
assets/gpt2_124M_loss.png
ADDED
assets/nanogpt.jpg
ADDED
bench.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A much shorter version of train.py for benchmarking
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
from contextlib import nullcontext
|
6 |
+
import numpy as np
|
7 |
+
import time
|
8 |
+
import torch
|
9 |
+
from model import GPTConfig, GPT
|
10 |
+
|
11 |
+
# -----------------------------------------------------------------------------
|
12 |
+
batch_size = 12
|
13 |
+
block_size = 1024
|
14 |
+
bias = False
|
15 |
+
real_data = True
|
16 |
+
seed = 1337
|
17 |
+
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
18 |
+
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16'
|
19 |
+
compile = True # use PyTorch 2.0 to compile the model to be faster
|
20 |
+
profile = False # use pytorch profiler, or just simple benchmarking?
|
21 |
+
exec(open('configurator.py').read()) # overrides from command line or config file
|
22 |
+
# -----------------------------------------------------------------------------
|
23 |
+
|
24 |
+
torch.manual_seed(seed)
|
25 |
+
torch.cuda.manual_seed(seed)
|
26 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
27 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
28 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
29 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
30 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
31 |
+
|
32 |
+
# data loading init
|
33 |
+
if real_data:
|
34 |
+
dataset = 'openwebtext'
|
35 |
+
data_dir = os.path.join('data', dataset)
|
36 |
+
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
|
37 |
+
def get_batch(split):
|
38 |
+
data = train_data # note ignore split in benchmarking script
|
39 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
40 |
+
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
|
41 |
+
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
|
42 |
+
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
43 |
+
return x, y
|
44 |
+
else:
|
45 |
+
# alternatively, if fixed data is desired to not care about data loading
|
46 |
+
x = torch.randint(50304, (batch_size, block_size), device=device)
|
47 |
+
y = torch.randint(50304, (batch_size, block_size), device=device)
|
48 |
+
get_batch = lambda split: (x, y)
|
49 |
+
|
50 |
+
# model init
|
51 |
+
gptconf = GPTConfig(
|
52 |
+
block_size = block_size, # how far back does the model look? i.e. context size
|
53 |
+
n_layer = 12, n_head = 12, n_embd = 768, # size of the model
|
54 |
+
dropout = 0, # for determinism
|
55 |
+
bias = bias,
|
56 |
+
)
|
57 |
+
model = GPT(gptconf)
|
58 |
+
model.to(device)
|
59 |
+
|
60 |
+
optimizer = model.configure_optimizers(weight_decay=1e-2, learning_rate=1e-4, betas=(0.9, 0.95), device_type=device_type)
|
61 |
+
|
62 |
+
if compile:
|
63 |
+
print("Compiling model...")
|
64 |
+
model = torch.compile(model) # pytorch 2.0
|
65 |
+
|
66 |
+
if profile:
|
67 |
+
# useful docs on pytorch profiler:
|
68 |
+
# - tutorial https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
|
69 |
+
# - api https://pytorch.org/docs/stable/profiler.html#torch.profiler.profile
|
70 |
+
wait, warmup, active = 5, 5, 5
|
71 |
+
num_steps = wait + warmup + active
|
72 |
+
with torch.profiler.profile(
|
73 |
+
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
|
74 |
+
schedule=torch.profiler.schedule(wait=wait, warmup=warmup, active=active, repeat=1),
|
75 |
+
on_trace_ready=torch.profiler.tensorboard_trace_handler('./bench_log'),
|
76 |
+
record_shapes=False,
|
77 |
+
profile_memory=False,
|
78 |
+
with_stack=False, # incurs an additional overhead, disable if not needed
|
79 |
+
with_flops=True,
|
80 |
+
with_modules=False, # only for torchscript models atm
|
81 |
+
) as prof:
|
82 |
+
|
83 |
+
X, Y = get_batch('train')
|
84 |
+
for k in range(num_steps):
|
85 |
+
with ctx:
|
86 |
+
logits, loss = model(X, Y)
|
87 |
+
X, Y = get_batch('train')
|
88 |
+
optimizer.zero_grad(set_to_none=True)
|
89 |
+
loss.backward()
|
90 |
+
optimizer.step()
|
91 |
+
lossf = loss.item()
|
92 |
+
print(f"{k}/{num_steps} loss: {lossf:.4f}")
|
93 |
+
|
94 |
+
prof.step() # notify the profiler at end of each step
|
95 |
+
|
96 |
+
else:
|
97 |
+
|
98 |
+
# simple benchmarking
|
99 |
+
torch.cuda.synchronize()
|
100 |
+
for stage, num_steps in enumerate([10, 20]): # burnin, then benchmark
|
101 |
+
t0 = time.time()
|
102 |
+
X, Y = get_batch('train')
|
103 |
+
for k in range(num_steps):
|
104 |
+
with ctx:
|
105 |
+
logits, loss = model(X, Y)
|
106 |
+
X, Y = get_batch('train')
|
107 |
+
optimizer.zero_grad(set_to_none=True)
|
108 |
+
loss.backward()
|
109 |
+
optimizer.step()
|
110 |
+
lossf = loss.item()
|
111 |
+
print(f"{k}/{num_steps} loss: {lossf:.4f}")
|
112 |
+
torch.cuda.synchronize()
|
113 |
+
t1 = time.time()
|
114 |
+
dt = t1-t0
|
115 |
+
mfu = model.estimate_mfu(batch_size * 1 * num_steps, dt)
|
116 |
+
if stage == 1:
|
117 |
+
print(f"time per iteration: {dt/num_steps*1000:.4f}ms, MFU: {mfu*100:.2f}%")
|
config/eval_gpt2.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# evaluate the base gpt2
|
2 |
+
# n_layer=12, n_head=12, n_embd=768
|
3 |
+
# 124M parameters
|
4 |
+
batch_size = 8
|
5 |
+
eval_iters = 500 # use more iterations to get good estimate
|
6 |
+
eval_only = True
|
7 |
+
wandb_log = False
|
8 |
+
init_from = 'gpt2'
|
config/eval_gpt2_large.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# evaluate the base gpt2
|
2 |
+
# n_layer=36, n_head=20, n_embd=1280
|
3 |
+
# 774M parameters
|
4 |
+
batch_size = 8
|
5 |
+
eval_iters = 500 # use more iterations to get good estimate
|
6 |
+
eval_only = True
|
7 |
+
wandb_log = False
|
8 |
+
init_from = 'gpt2-large'
|
config/eval_gpt2_medium.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# evaluate the base gpt2
|
2 |
+
# n_layer=24, n_head=16, n_embd=1024
|
3 |
+
# 350M parameters
|
4 |
+
batch_size = 8
|
5 |
+
eval_iters = 500 # use more iterations to get good estimate
|
6 |
+
eval_only = True
|
7 |
+
wandb_log = False
|
8 |
+
init_from = 'gpt2-medium'
|
config/eval_gpt2_xl.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# evaluate the base gpt2
|
2 |
+
# n_layer=48, n_head=25, n_embd=1600
|
3 |
+
# 1558M parameters
|
4 |
+
batch_size = 8
|
5 |
+
eval_iters = 500 # use more iterations to get good estimate
|
6 |
+
eval_only = True
|
7 |
+
wandb_log = False
|
8 |
+
init_from = 'gpt2-xl'
|
config/finetune_shakespeare.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
out_dir = 'out-shakespeare'
|
4 |
+
eval_interval = 5
|
5 |
+
eval_iters = 40
|
6 |
+
wandb_log = False # feel free to turn on
|
7 |
+
wandb_project = 'shakespeare'
|
8 |
+
wandb_run_name = 'ft-' + str(time.time())
|
9 |
+
|
10 |
+
dataset = 'shakespeare'
|
11 |
+
init_from = 'gpt2-xl' # this is the largest GPT-2 model
|
12 |
+
|
13 |
+
# only save checkpoints if the validation loss improves
|
14 |
+
always_save_checkpoint = False
|
15 |
+
|
16 |
+
# the number of examples per iter:
|
17 |
+
# 1 batch_size * 32 grad_accum * 1024 tokens = 32,768 tokens/iter
|
18 |
+
# shakespeare has 301,966 tokens, so 1 epoch ~= 9.2 iters
|
19 |
+
batch_size = 1
|
20 |
+
gradient_accumulation_steps = 32
|
21 |
+
max_iters = 20
|
22 |
+
|
23 |
+
# finetune at constant LR
|
24 |
+
learning_rate = 3e-5
|
25 |
+
decay_lr = False
|
config/train_gpt2.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# config for training GPT-2 (124M) down to very nice loss of ~2.85 on 1 node of 8X A100 40GB
|
2 |
+
# launch as the following (e.g. in a screen session) and wait ~5 days:
|
3 |
+
# $ torchrun --standalone --nproc_per_node=8 train.py config/train_gpt2.py
|
4 |
+
|
5 |
+
wandb_log = True
|
6 |
+
wandb_project = 'owt'
|
7 |
+
wandb_run_name='gpt2-124M'
|
8 |
+
|
9 |
+
# these make the total batch size be ~0.5M
|
10 |
+
# 12 batch size * 1024 block size * 5 gradaccum * 8 GPUs = 491,520
|
11 |
+
batch_size = 12
|
12 |
+
block_size = 1024
|
13 |
+
gradient_accumulation_steps = 5 * 8
|
14 |
+
|
15 |
+
# this makes total number of tokens be 300B
|
16 |
+
max_iters = 600000
|
17 |
+
lr_decay_iters = 600000
|
18 |
+
|
19 |
+
# eval stuff
|
20 |
+
eval_interval = 1000
|
21 |
+
eval_iters = 200
|
22 |
+
log_interval = 10
|
23 |
+
|
24 |
+
# weight decay
|
25 |
+
weight_decay = 1e-1
|
config/train_shakespeare_char.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# train a miniature character-level shakespeare model
|
2 |
+
# good for debugging and playing on macbooks and such
|
3 |
+
|
4 |
+
out_dir = 'out-shakespeare-char'
|
5 |
+
eval_interval = 250 # keep frequent because we'll overfit
|
6 |
+
eval_iters = 200
|
7 |
+
log_interval = 10 # don't print too too often
|
8 |
+
|
9 |
+
# we expect to overfit on this small dataset, so only save when val improves
|
10 |
+
always_save_checkpoint = False
|
11 |
+
|
12 |
+
wandb_log = False # override via command line if you like
|
13 |
+
wandb_project = 'shakespeare-char'
|
14 |
+
wandb_run_name = 'mini-gpt'
|
15 |
+
|
16 |
+
dataset = 'shakespeare_char'
|
17 |
+
gradient_accumulation_steps = 1
|
18 |
+
batch_size = 64
|
19 |
+
block_size = 256 # context of up to 256 previous characters
|
20 |
+
|
21 |
+
# baby GPT model :)
|
22 |
+
n_layer = 6
|
23 |
+
n_head = 6
|
24 |
+
n_embd = 384
|
25 |
+
dropout = 0.2
|
26 |
+
|
27 |
+
learning_rate = 1e-3 # with baby networks can afford to go a bit higher
|
28 |
+
max_iters = 5000
|
29 |
+
lr_decay_iters = 5000 # make equal to max_iters usually
|
30 |
+
min_lr = 1e-4 # learning_rate / 10 usually
|
31 |
+
beta2 = 0.99 # make a bit bigger because number of tokens per iter is small
|
32 |
+
|
33 |
+
warmup_iters = 100 # not super necessary potentially
|
34 |
+
|
35 |
+
# on macbook also add
|
36 |
+
# device = 'cpu' # run on cpu only
|
37 |
+
# compile = False # do not torch compile the model
|
configurator.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Poor Man's Configurator. Probably a terrible idea. Example usage:
|
3 |
+
$ python train.py config/override_file.py --batch_size=32
|
4 |
+
this will first run config/override_file.py, then override batch_size to 32
|
5 |
+
|
6 |
+
The code in this file will be run as follows from e.g. train.py:
|
7 |
+
>>> exec(open('configurator.py').read())
|
8 |
+
|
9 |
+
So it's not a Python module, it's just shuttling this code away from train.py
|
10 |
+
The code in this script then overrides the globals()
|
11 |
+
|
12 |
+
I know people are not going to love this, I just really dislike configuration
|
13 |
+
complexity and having to prepend config. to every single variable. If someone
|
14 |
+
comes up with a better simple Python solution I am all ears.
|
15 |
+
"""
|
16 |
+
|
17 |
+
import sys
|
18 |
+
from ast import literal_eval
|
19 |
+
|
20 |
+
for arg in sys.argv[1:]:
|
21 |
+
if '=' not in arg:
|
22 |
+
# assume it's the name of a config file
|
23 |
+
assert not arg.startswith('--')
|
24 |
+
config_file = arg
|
25 |
+
print(f"Overriding config with {config_file}:")
|
26 |
+
with open(config_file) as f:
|
27 |
+
print(f.read())
|
28 |
+
exec(open(config_file).read())
|
29 |
+
else:
|
30 |
+
# assume it's a --key=value argument
|
31 |
+
assert arg.startswith('--')
|
32 |
+
key, val = arg.split('=')
|
33 |
+
key = key[2:]
|
34 |
+
if key in globals():
|
35 |
+
try:
|
36 |
+
# attempt to eval it it (e.g. if bool, number, or etc)
|
37 |
+
attempt = literal_eval(val)
|
38 |
+
except (SyntaxError, ValueError):
|
39 |
+
# if that goes wrong, just use the string
|
40 |
+
attempt = val
|
41 |
+
# ensure the types match ok
|
42 |
+
assert type(attempt) == type(globals()[key])
|
43 |
+
# cross fingers
|
44 |
+
print(f"Overriding: {key} = {attempt}")
|
45 |
+
globals()[key] = attempt
|
46 |
+
else:
|
47 |
+
raise ValueError(f"Unknown config key: {key}")
|
data/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
data/openwebtext/prepare.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# saves the openwebtext dataset to a binary file for training. following was helpful:
|
2 |
+
# https://github.com/HazyResearch/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py
|
3 |
+
|
4 |
+
import os
|
5 |
+
from tqdm import tqdm
|
6 |
+
import numpy as np
|
7 |
+
import tiktoken
|
8 |
+
from datasets import load_dataset # huggingface datasets
|
9 |
+
|
10 |
+
# number of workers in .map() call
|
11 |
+
# good number to use is ~order number of cpu cores // 2
|
12 |
+
num_proc = 8
|
13 |
+
|
14 |
+
# number of workers in load_dataset() call
|
15 |
+
# best number might be different from num_proc above as it also depends on NW speed.
|
16 |
+
# it is better than 1 usually though
|
17 |
+
num_proc_load_dataset = num_proc
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
# takes 54GB in huggingface .cache dir, about 8M documents (8,013,769)
|
21 |
+
dataset = load_dataset("openwebtext", num_proc=num_proc_load_dataset)
|
22 |
+
|
23 |
+
# owt by default only contains the 'train' split, so create a test split
|
24 |
+
split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
|
25 |
+
split_dataset['val'] = split_dataset.pop('test') # rename the test split to val
|
26 |
+
|
27 |
+
# this results in:
|
28 |
+
# >>> split_dataset
|
29 |
+
# DatasetDict({
|
30 |
+
# train: Dataset({
|
31 |
+
# features: ['text'],
|
32 |
+
# num_rows: 8009762
|
33 |
+
# })
|
34 |
+
# val: Dataset({
|
35 |
+
# features: ['text'],
|
36 |
+
# num_rows: 4007
|
37 |
+
# })
|
38 |
+
# })
|
39 |
+
|
40 |
+
# we now want to tokenize the dataset. first define the encoding function (gpt2 bpe)
|
41 |
+
enc = tiktoken.get_encoding("gpt2")
|
42 |
+
def process(example):
|
43 |
+
ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
|
44 |
+
ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
|
45 |
+
# note: I think eot should be prepended not appended... hmm. it's called "eot" though...
|
46 |
+
out = {'ids': ids, 'len': len(ids)}
|
47 |
+
return out
|
48 |
+
|
49 |
+
# tokenize the dataset
|
50 |
+
tokenized = split_dataset.map(
|
51 |
+
process,
|
52 |
+
remove_columns=['text'],
|
53 |
+
desc="tokenizing the splits",
|
54 |
+
num_proc=num_proc,
|
55 |
+
)
|
56 |
+
|
57 |
+
# concatenate all the ids in each dataset into one large file we can use for training
|
58 |
+
for split, dset in tokenized.items():
|
59 |
+
arr_len = np.sum(dset['len'], dtype=np.uint64)
|
60 |
+
filename = os.path.join(os.path.dirname(__file__), f'{split}.bin')
|
61 |
+
dtype = np.uint16 # (can do since enc.max_token_value == 50256 is < 2**16)
|
62 |
+
arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
|
63 |
+
total_batches = 1024
|
64 |
+
|
65 |
+
idx = 0
|
66 |
+
for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
|
67 |
+
# Batch together samples for faster write
|
68 |
+
batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
|
69 |
+
arr_batch = np.concatenate(batch['ids'])
|
70 |
+
# Write into mmap
|
71 |
+
arr[idx : idx + len(arr_batch)] = arr_batch
|
72 |
+
idx += len(arr_batch)
|
73 |
+
arr.flush()
|
74 |
+
|
75 |
+
# train.bin is ~17GB, val.bin ~8.5MB
|
76 |
+
# train has ~9B tokens (9,035,582,198)
|
77 |
+
# val has ~4M tokens (4,434,897)
|
78 |
+
|
79 |
+
# to read the bin files later, e.g. with numpy:
|
80 |
+
# m = np.memmap('train.bin', dtype=np.uint16, mode='r')
|
data/openwebtext/readme.md
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## openwebtext dataset
|
3 |
+
|
4 |
+
after running `prepare.py` (preprocess) we get:
|
5 |
+
|
6 |
+
- train.bin is ~17GB, val.bin ~8.5MB
|
7 |
+
- train has ~9B tokens (9,035,582,198)
|
8 |
+
- val has ~4M tokens (4,434,897)
|
9 |
+
|
10 |
+
this came from 8,013,769 documents in total.
|
11 |
+
|
12 |
+
references:
|
13 |
+
|
14 |
+
- OpenAI's WebText dataset is discussed in [GPT-2 paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
|
15 |
+
- [OpenWebText](https://skylion007.github.io/OpenWebTextCorpus/) dataset
|
data/shakespeare/prepare.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import tiktoken
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# download the tiny shakespeare dataset
|
7 |
+
input_file_path = os.path.join(os.path.dirname(__file__), 'input.txt')
|
8 |
+
if not os.path.exists(input_file_path):
|
9 |
+
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
|
10 |
+
with open(input_file_path, 'w') as f:
|
11 |
+
f.write(requests.get(data_url).text)
|
12 |
+
|
13 |
+
with open(input_file_path, 'r') as f:
|
14 |
+
data = f.read()
|
15 |
+
n = len(data)
|
16 |
+
train_data = data[:int(n*0.9)]
|
17 |
+
val_data = data[int(n*0.9):]
|
18 |
+
|
19 |
+
# encode with tiktoken gpt2 bpe
|
20 |
+
enc = tiktoken.get_encoding("gpt2")
|
21 |
+
train_ids = enc.encode_ordinary(train_data)
|
22 |
+
val_ids = enc.encode_ordinary(val_data)
|
23 |
+
print(f"train has {len(train_ids):,} tokens")
|
24 |
+
print(f"val has {len(val_ids):,} tokens")
|
25 |
+
|
26 |
+
# export to bin files
|
27 |
+
train_ids = np.array(train_ids, dtype=np.uint16)
|
28 |
+
val_ids = np.array(val_ids, dtype=np.uint16)
|
29 |
+
train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin'))
|
30 |
+
val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin'))
|
31 |
+
|
32 |
+
# train.bin has 301,966 tokens
|
33 |
+
# val.bin has 36,059 tokens
|
data/shakespeare/readme.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# tiny shakespeare
|
3 |
+
|
4 |
+
Tiny shakespeare, of the good old char-rnn fame :)
|
5 |
+
|
6 |
+
After running `prepare.py`:
|
7 |
+
|
8 |
+
- train.bin has 301,966 tokens
|
9 |
+
- val.bin has 36,059 tokens
|
data/shakespeare_char/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
data/shakespeare_char/input.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/shakespeare_char/meta.pkl
ADDED
Binary file (703 Bytes). View file
|
|
data/shakespeare_char/prepare.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Prepare the Shakespeare dataset for character-level language modeling.
|
3 |
+
So instead of encoding with GPT-2 BPE tokens, we just map characters to ints.
|
4 |
+
Will save train.bin, val.bin containing the ids, and meta.pkl containing the
|
5 |
+
encoder and decoder and some other related info.
|
6 |
+
"""
|
7 |
+
import os
|
8 |
+
import pickle
|
9 |
+
import requests
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
# download the tiny shakespeare dataset
|
13 |
+
input_file_path = os.path.join(os.path.dirname(__file__), 'input.txt')
|
14 |
+
if not os.path.exists(input_file_path):
|
15 |
+
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
|
16 |
+
with open(input_file_path, 'w') as f:
|
17 |
+
f.write(requests.get(data_url).text)
|
18 |
+
|
19 |
+
with open(input_file_path, 'r') as f:
|
20 |
+
data = f.read()
|
21 |
+
print(f"length of dataset in characters: {len(data):,}")
|
22 |
+
|
23 |
+
# get all the unique characters that occur in this text
|
24 |
+
chars = sorted(list(set(data)))
|
25 |
+
vocab_size = len(chars)
|
26 |
+
print("all the unique characters:", ''.join(chars))
|
27 |
+
print(f"vocab size: {vocab_size:,}")
|
28 |
+
|
29 |
+
# create a mapping from characters to integers
|
30 |
+
stoi = { ch:i for i,ch in enumerate(chars) }
|
31 |
+
itos = { i:ch for i,ch in enumerate(chars) }
|
32 |
+
def encode(s):
|
33 |
+
return [stoi[c] for c in s] # encoder: take a string, output a list of integers
|
34 |
+
def decode(l):
|
35 |
+
return ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
|
36 |
+
|
37 |
+
# create the train and test splits
|
38 |
+
n = len(data)
|
39 |
+
train_data = data[:int(n*0.9)]
|
40 |
+
val_data = data[int(n*0.9):]
|
41 |
+
|
42 |
+
# encode both to integers
|
43 |
+
train_ids = encode(train_data)
|
44 |
+
val_ids = encode(val_data)
|
45 |
+
print(f"train has {len(train_ids):,} tokens")
|
46 |
+
print(f"val has {len(val_ids):,} tokens")
|
47 |
+
|
48 |
+
# export to bin files
|
49 |
+
train_ids = np.array(train_ids, dtype=np.uint16)
|
50 |
+
val_ids = np.array(val_ids, dtype=np.uint16)
|
51 |
+
train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin'))
|
52 |
+
val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin'))
|
53 |
+
|
54 |
+
# save the meta information as well, to help us encode/decode later
|
55 |
+
meta = {
|
56 |
+
'vocab_size': vocab_size,
|
57 |
+
'itos': itos,
|
58 |
+
'stoi': stoi,
|
59 |
+
}
|
60 |
+
with open(os.path.join(os.path.dirname(__file__), 'meta.pkl'), 'wb') as f:
|
61 |
+
pickle.dump(meta, f)
|
62 |
+
|
63 |
+
# length of dataset in characters: 1115394
|
64 |
+
# all the unique characters:
|
65 |
+
# !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
|
66 |
+
# vocab size: 65
|
67 |
+
# train has 1003854 tokens
|
68 |
+
# val has 111540 tokens
|
data/shakespeare_char/readme.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# tiny shakespeare, character-level
|
3 |
+
|
4 |
+
Tiny shakespeare, of the good old char-rnn fame :) Treated on character-level.
|
5 |
+
|
6 |
+
After running `prepare.py`:
|
7 |
+
|
8 |
+
- train.bin has 1,003,854 tokens
|
9 |
+
- val.bin has 111,540 tokens
|
model.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Full definition of a GPT Language Model, all of it in this single file.
|
3 |
+
References:
|
4 |
+
1) the official GPT-2 TensorFlow implementation released by OpenAI:
|
5 |
+
https://github.com/openai/gpt-2/blob/master/src/model.py
|
6 |
+
2) huggingface/transformers PyTorch implementation:
|
7 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
|
8 |
+
"""
|
9 |
+
|
10 |
+
import math
|
11 |
+
import inspect
|
12 |
+
from dataclasses import dataclass
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.nn import functional as F
|
17 |
+
|
18 |
+
class LayerNorm(nn.Module):
|
19 |
+
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
20 |
+
|
21 |
+
def __init__(self, ndim, bias):
|
22 |
+
super().__init__()
|
23 |
+
self.weight = nn.Parameter(torch.ones(ndim))
|
24 |
+
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
25 |
+
|
26 |
+
def forward(self, input):
|
27 |
+
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
28 |
+
|
29 |
+
class CausalSelfAttention(nn.Module):
|
30 |
+
|
31 |
+
def __init__(self, config):
|
32 |
+
super().__init__()
|
33 |
+
assert config.n_embd % config.n_head == 0
|
34 |
+
# key, query, value projections for all heads, but in a batch
|
35 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
36 |
+
# output projection
|
37 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
38 |
+
# regularization
|
39 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
40 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
41 |
+
self.n_head = config.n_head
|
42 |
+
self.n_embd = config.n_embd
|
43 |
+
self.dropout = config.dropout
|
44 |
+
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
|
45 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
46 |
+
if not self.flash:
|
47 |
+
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
48 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
49 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
50 |
+
.view(1, 1, config.block_size, config.block_size))
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
54 |
+
|
55 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
56 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
57 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
58 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
59 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
60 |
+
|
61 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
62 |
+
if self.flash:
|
63 |
+
# efficient attention using Flash Attention CUDA kernels
|
64 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
|
65 |
+
else:
|
66 |
+
# manual implementation of attention
|
67 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
68 |
+
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
|
69 |
+
att = F.softmax(att, dim=-1)
|
70 |
+
att = self.attn_dropout(att)
|
71 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
72 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
73 |
+
|
74 |
+
# output projection
|
75 |
+
y = self.resid_dropout(self.c_proj(y))
|
76 |
+
return y
|
77 |
+
|
78 |
+
class MLP(nn.Module):
|
79 |
+
|
80 |
+
def __init__(self, config):
|
81 |
+
super().__init__()
|
82 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
83 |
+
self.gelu = nn.GELU()
|
84 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
85 |
+
self.dropout = nn.Dropout(config.dropout)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
x = self.c_fc(x)
|
89 |
+
x = self.gelu(x)
|
90 |
+
x = self.c_proj(x)
|
91 |
+
x = self.dropout(x)
|
92 |
+
return x
|
93 |
+
|
94 |
+
class Block(nn.Module):
|
95 |
+
|
96 |
+
def __init__(self, config):
|
97 |
+
super().__init__()
|
98 |
+
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
|
99 |
+
self.attn = CausalSelfAttention(config)
|
100 |
+
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
|
101 |
+
self.mlp = MLP(config)
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
x = x + self.attn(self.ln_1(x))
|
105 |
+
x = x + self.mlp(self.ln_2(x))
|
106 |
+
return x
|
107 |
+
|
108 |
+
@dataclass
|
109 |
+
class GPTConfig:
|
110 |
+
block_size: int = 1024
|
111 |
+
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
|
112 |
+
n_layer: int = 12
|
113 |
+
n_head: int = 12
|
114 |
+
n_embd: int = 768
|
115 |
+
dropout: float = 0.0
|
116 |
+
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
117 |
+
|
118 |
+
class GPT(nn.Module):
|
119 |
+
|
120 |
+
def __init__(self, config):
|
121 |
+
super().__init__()
|
122 |
+
assert config.vocab_size is not None
|
123 |
+
assert config.block_size is not None
|
124 |
+
self.config = config
|
125 |
+
|
126 |
+
self.transformer = nn.ModuleDict(dict(
|
127 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
128 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
129 |
+
drop = nn.Dropout(config.dropout),
|
130 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
131 |
+
ln_f = LayerNorm(config.n_embd, bias=config.bias),
|
132 |
+
))
|
133 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
134 |
+
# with weight tying when using torch.compile() some warnings get generated:
|
135 |
+
# "UserWarning: functional_call was passed multiple values for tied weights.
|
136 |
+
# This behavior is deprecated and will be an error in future versions"
|
137 |
+
# not 100% sure what this is, so far seems to be harmless. TODO investigate
|
138 |
+
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
|
139 |
+
|
140 |
+
# init all weights
|
141 |
+
self.apply(self._init_weights)
|
142 |
+
# apply special scaled init to the residual projections, per GPT-2 paper
|
143 |
+
for pn, p in self.named_parameters():
|
144 |
+
if pn.endswith('c_proj.weight'):
|
145 |
+
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
146 |
+
|
147 |
+
# report number of parameters
|
148 |
+
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
|
149 |
+
|
150 |
+
def get_num_params(self, non_embedding=True):
|
151 |
+
"""
|
152 |
+
Return the number of parameters in the model.
|
153 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
154 |
+
The token embeddings would too, except due to the parameter sharing these
|
155 |
+
params are actually used as weights in the final layer, so we include them.
|
156 |
+
"""
|
157 |
+
n_params = sum(p.numel() for p in self.parameters())
|
158 |
+
if non_embedding:
|
159 |
+
n_params -= self.transformer.wpe.weight.numel()
|
160 |
+
return n_params
|
161 |
+
|
162 |
+
def _init_weights(self, module):
|
163 |
+
if isinstance(module, nn.Linear):
|
164 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
165 |
+
if module.bias is not None:
|
166 |
+
torch.nn.init.zeros_(module.bias)
|
167 |
+
elif isinstance(module, nn.Embedding):
|
168 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
169 |
+
|
170 |
+
def forward(self, idx, targets=None):
|
171 |
+
device = idx.device
|
172 |
+
b, t = idx.size()
|
173 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
174 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
|
175 |
+
|
176 |
+
# forward the GPT model itself
|
177 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
178 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
|
179 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
180 |
+
for block in self.transformer.h:
|
181 |
+
x = block(x)
|
182 |
+
x = self.transformer.ln_f(x)
|
183 |
+
|
184 |
+
if targets is not None:
|
185 |
+
# if we are given some desired targets also calculate the loss
|
186 |
+
logits = self.lm_head(x)
|
187 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
188 |
+
else:
|
189 |
+
# inference-time mini-optimization: only forward the lm_head on the very last position
|
190 |
+
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
191 |
+
loss = None
|
192 |
+
|
193 |
+
return logits, loss
|
194 |
+
|
195 |
+
def crop_block_size(self, block_size):
|
196 |
+
# model surgery to decrease the block size if necessary
|
197 |
+
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
|
198 |
+
# but want to use a smaller block size for some smaller, simpler model
|
199 |
+
assert block_size <= self.config.block_size
|
200 |
+
self.config.block_size = block_size
|
201 |
+
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
|
202 |
+
for block in self.transformer.h:
|
203 |
+
if hasattr(block.attn, 'bias'):
|
204 |
+
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
|
205 |
+
|
206 |
+
@classmethod
|
207 |
+
def from_pretrained(cls, model_type, override_args=None):
|
208 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
209 |
+
override_args = override_args or {} # default to empty dict
|
210 |
+
# only dropout can be overridden see more notes below
|
211 |
+
assert all(k == 'dropout' for k in override_args)
|
212 |
+
from transformers import GPT2LMHeadModel
|
213 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
214 |
+
|
215 |
+
# n_layer, n_head and n_embd are determined from model_type
|
216 |
+
config_args = {
|
217 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
218 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
219 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
220 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
221 |
+
}[model_type]
|
222 |
+
print("forcing vocab_size=50257, block_size=1024, bias=True")
|
223 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
224 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
225 |
+
config_args['bias'] = True # always True for GPT model checkpoints
|
226 |
+
# we can override the dropout rate, if desired
|
227 |
+
if 'dropout' in override_args:
|
228 |
+
print(f"overriding dropout rate to {override_args['dropout']}")
|
229 |
+
config_args['dropout'] = override_args['dropout']
|
230 |
+
# create a from-scratch initialized minGPT model
|
231 |
+
config = GPTConfig(**config_args)
|
232 |
+
model = GPT(config)
|
233 |
+
sd = model.state_dict()
|
234 |
+
sd_keys = sd.keys()
|
235 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
236 |
+
|
237 |
+
# init a huggingface/transformers model
|
238 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
239 |
+
sd_hf = model_hf.state_dict()
|
240 |
+
|
241 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
242 |
+
sd_keys_hf = sd_hf.keys()
|
243 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
244 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
245 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
246 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
247 |
+
# this means that we have to transpose these weights when we import them
|
248 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
249 |
+
for k in sd_keys_hf:
|
250 |
+
if any(k.endswith(w) for w in transposed):
|
251 |
+
# special treatment for the Conv1D weights we need to transpose
|
252 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
253 |
+
with torch.no_grad():
|
254 |
+
sd[k].copy_(sd_hf[k].t())
|
255 |
+
else:
|
256 |
+
# vanilla copy over the other parameters
|
257 |
+
assert sd_hf[k].shape == sd[k].shape
|
258 |
+
with torch.no_grad():
|
259 |
+
sd[k].copy_(sd_hf[k])
|
260 |
+
|
261 |
+
return model
|
262 |
+
|
263 |
+
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
|
264 |
+
# start with all of the candidate parameters
|
265 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
266 |
+
# filter out those that do not require grad
|
267 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
268 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
269 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
270 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
271 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
272 |
+
optim_groups = [
|
273 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
274 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
275 |
+
]
|
276 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
277 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
278 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
279 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
280 |
+
# Create AdamW optimizer and use the fused version if it is available
|
281 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
282 |
+
use_fused = fused_available and device_type == 'cuda'
|
283 |
+
extra_args = dict(fused=True) if use_fused else dict()
|
284 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
|
285 |
+
print(f"using fused AdamW: {use_fused}")
|
286 |
+
|
287 |
+
return optimizer
|
288 |
+
|
289 |
+
def estimate_mfu(self, fwdbwd_per_iter, dt):
|
290 |
+
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
|
291 |
+
# first estimate the number of flops we do per iteration.
|
292 |
+
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
|
293 |
+
N = self.get_num_params()
|
294 |
+
cfg = self.config
|
295 |
+
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
|
296 |
+
flops_per_token = 6*N + 12*L*H*Q*T
|
297 |
+
flops_per_fwdbwd = flops_per_token * T
|
298 |
+
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
|
299 |
+
# express our flops throughput as ratio of A100 bfloat16 peak flops
|
300 |
+
flops_achieved = flops_per_iter * (1.0/dt) # per second
|
301 |
+
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
|
302 |
+
mfu = flops_achieved / flops_promised
|
303 |
+
return mfu
|
304 |
+
|
305 |
+
@torch.no_grad()
|
306 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
307 |
+
"""
|
308 |
+
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
309 |
+
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
310 |
+
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
311 |
+
"""
|
312 |
+
for _ in range(max_new_tokens):
|
313 |
+
# if the sequence context is growing too long we must crop it at block_size
|
314 |
+
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
315 |
+
# forward the model to get the logits for the index in the sequence
|
316 |
+
logits, _ = self(idx_cond)
|
317 |
+
# pluck the logits at the final step and scale by desired temperature
|
318 |
+
logits = logits[:, -1, :] / temperature
|
319 |
+
# optionally crop the logits to only the top k options
|
320 |
+
if top_k is not None:
|
321 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
322 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
323 |
+
# apply softmax to convert logits to (normalized) probabilities
|
324 |
+
probs = F.softmax(logits, dim=-1)
|
325 |
+
# sample from the distribution
|
326 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
327 |
+
# append sampled index to the running sequence and continue
|
328 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
329 |
+
|
330 |
+
return idx
|
out-shakespeare-char/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
sample.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Sample from a trained model
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import pickle
|
6 |
+
from contextlib import nullcontext
|
7 |
+
import torch
|
8 |
+
import tiktoken
|
9 |
+
from model import GPTConfig, GPT
|
10 |
+
|
11 |
+
# -----------------------------------------------------------------------------
|
12 |
+
init_from = 'resume' # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
|
13 |
+
out_dir = 'out' # ignored if init_from is not 'resume'
|
14 |
+
start = "\n" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt"
|
15 |
+
num_samples = 10 # number of samples to draw
|
16 |
+
max_new_tokens = 500 # number of tokens generated in each sample
|
17 |
+
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
|
18 |
+
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
19 |
+
seed = 1337
|
20 |
+
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
21 |
+
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16'
|
22 |
+
compile = False # use PyTorch 2.0 to compile the model to be faster
|
23 |
+
exec(open('configurator.py').read()) # overrides from command line or config file
|
24 |
+
# -----------------------------------------------------------------------------
|
25 |
+
|
26 |
+
torch.manual_seed(seed)
|
27 |
+
torch.cuda.manual_seed(seed)
|
28 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
29 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
30 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
31 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
32 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
33 |
+
|
34 |
+
# model
|
35 |
+
if init_from == 'resume':
|
36 |
+
# init from a model saved in a specific directory
|
37 |
+
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
38 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
39 |
+
gptconf = GPTConfig(**checkpoint['model_args'])
|
40 |
+
model = GPT(gptconf)
|
41 |
+
state_dict = checkpoint['model']
|
42 |
+
unwanted_prefix = '_orig_mod.'
|
43 |
+
for k,v in list(state_dict.items()):
|
44 |
+
if k.startswith(unwanted_prefix):
|
45 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
46 |
+
model.load_state_dict(state_dict)
|
47 |
+
elif init_from.startswith('gpt2'):
|
48 |
+
# init from a given GPT-2 model
|
49 |
+
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
|
50 |
+
|
51 |
+
model.eval()
|
52 |
+
model.to(device)
|
53 |
+
if compile:
|
54 |
+
model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
55 |
+
|
56 |
+
# look for the meta pickle in case it is available in the dataset folder
|
57 |
+
load_meta = False
|
58 |
+
if init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']: # older checkpoints might not have these...
|
59 |
+
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
|
60 |
+
load_meta = os.path.exists(meta_path)
|
61 |
+
if load_meta:
|
62 |
+
print(f"Loading meta from {meta_path}...")
|
63 |
+
with open(meta_path, 'rb') as f:
|
64 |
+
meta = pickle.load(f)
|
65 |
+
# TODO want to make this more general to arbitrary encoder/decoder schemes
|
66 |
+
stoi, itos = meta['stoi'], meta['itos']
|
67 |
+
encode = lambda s: [stoi[c] for c in s]
|
68 |
+
decode = lambda l: ''.join([itos[i] for i in l])
|
69 |
+
else:
|
70 |
+
# ok let's assume gpt-2 encodings by default
|
71 |
+
print("No meta.pkl found, assuming GPT-2 encodings...")
|
72 |
+
enc = tiktoken.get_encoding("gpt2")
|
73 |
+
encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"})
|
74 |
+
decode = lambda l: enc.decode(l)
|
75 |
+
|
76 |
+
# encode the beginning of the prompt
|
77 |
+
if start.startswith('FILE:'):
|
78 |
+
with open(start[5:], 'r', encoding='utf-8') as f:
|
79 |
+
start = f.read()
|
80 |
+
start_ids = encode(start)
|
81 |
+
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
82 |
+
|
83 |
+
# run generation
|
84 |
+
with torch.no_grad():
|
85 |
+
with ctx:
|
86 |
+
for k in range(num_samples):
|
87 |
+
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
88 |
+
print(decode(y[0].tolist()))
|
89 |
+
print('---------------')
|
scaling_laws.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This training script can be run both on a single gpu in debug mode,
|
3 |
+
and also in a larger training run with distributed data parallel (ddp).
|
4 |
+
|
5 |
+
To run on a single GPU, example:
|
6 |
+
$ python train.py --batch_size=32 --compile=False
|
7 |
+
|
8 |
+
To run with DDP on 4 gpus on 1 node, example:
|
9 |
+
$ torchrun --standalone --nproc_per_node=4 train.py
|
10 |
+
|
11 |
+
To run with DDP on 4 gpus across 2 nodes, example:
|
12 |
+
- Run on the first (master) node with example IP 123.456.123.456:
|
13 |
+
$ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=123.456.123.456 --master_port=1234 train.py
|
14 |
+
- Run on the worker node:
|
15 |
+
$ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=123.456.123.456 --master_port=1234 train.py
|
16 |
+
(If your cluster does not have Infiniband interconnect prepend NCCL_IB_DISABLE=1)
|
17 |
+
"""
|
18 |
+
|
19 |
+
import os
|
20 |
+
import time
|
21 |
+
import math
|
22 |
+
import pickle
|
23 |
+
from contextlib import nullcontext
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
28 |
+
from torch.distributed import init_process_group, destroy_process_group
|
29 |
+
|
30 |
+
from model import GPTConfig, GPT
|
31 |
+
|
32 |
+
# -----------------------------------------------------------------------------
|
33 |
+
# default config values designed to train a gpt2 (124M) on OpenWebText
|
34 |
+
# I/O
|
35 |
+
out_dir = 'out'
|
36 |
+
eval_interval = 2000
|
37 |
+
log_interval = 1
|
38 |
+
eval_iters = 200
|
39 |
+
eval_only = False # if True, script exits right after the first eval
|
40 |
+
always_save_checkpoint = True # if True, always save a checkpoint after each eval
|
41 |
+
init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*'
|
42 |
+
# wandb logging
|
43 |
+
wandb_log = False # disabled by default
|
44 |
+
wandb_project = 'owt'
|
45 |
+
wandb_run_name = 'gpt2' # 'run' + str(time.time())
|
46 |
+
# data
|
47 |
+
dataset = 'openwebtext'
|
48 |
+
gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes
|
49 |
+
batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size
|
50 |
+
block_size = 1024
|
51 |
+
# model
|
52 |
+
n_layer = 12
|
53 |
+
n_head = 12
|
54 |
+
n_embd = 768
|
55 |
+
dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
|
56 |
+
bias = False # do we use bias inside LayerNorm and Linear layers?
|
57 |
+
# adamw optimizer
|
58 |
+
learning_rate = 6e-4 # max learning rate
|
59 |
+
max_iters = 600000 # total number of training iterations
|
60 |
+
weight_decay = 1e-1
|
61 |
+
beta1 = 0.9
|
62 |
+
beta2 = 0.95
|
63 |
+
grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
|
64 |
+
# learning rate decay settings
|
65 |
+
decay_lr = True # whether to decay the learning rate
|
66 |
+
warmup_iters = 2000 # how many steps to warm up for
|
67 |
+
lr_decay_iters = 600000 # should be ~= max_iters per Chinchilla
|
68 |
+
min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
|
69 |
+
# DDP settings
|
70 |
+
backend = 'nccl' # 'nccl', 'gloo', etc.
|
71 |
+
# system
|
72 |
+
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
|
73 |
+
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
|
74 |
+
compile = True # use PyTorch 2.0 to compile the model to be faster
|
75 |
+
# -----------------------------------------------------------------------------
|
76 |
+
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
77 |
+
exec(open('configurator.py').read()) # overrides from command line or config file
|
78 |
+
config = {k: globals()[k] for k in config_keys} # will be useful for logging
|
79 |
+
# -----------------------------------------------------------------------------
|
80 |
+
|
81 |
+
# various inits, derived attributes, I/O setup
|
82 |
+
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
|
83 |
+
if ddp:
|
84 |
+
init_process_group(backend=backend)
|
85 |
+
ddp_rank = int(os.environ['RANK'])
|
86 |
+
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
87 |
+
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
88 |
+
device = f'cuda:{ddp_local_rank}'
|
89 |
+
torch.cuda.set_device(device)
|
90 |
+
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
|
91 |
+
seed_offset = ddp_rank # each process gets a different seed
|
92 |
+
# world_size number of processes will be training simultaneously, so we can scale
|
93 |
+
# down the desired gradient accumulation iterations per process proportionally
|
94 |
+
assert gradient_accumulation_steps % ddp_world_size == 0
|
95 |
+
gradient_accumulation_steps //= ddp_world_size
|
96 |
+
else:
|
97 |
+
# if not ddp, we are running on a single gpu, and one process
|
98 |
+
master_process = True
|
99 |
+
seed_offset = 0
|
100 |
+
ddp_world_size = 1
|
101 |
+
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
|
102 |
+
print(f"tokens per iteration will be: {tokens_per_iter:,}")
|
103 |
+
|
104 |
+
if master_process:
|
105 |
+
os.makedirs(out_dir, exist_ok=True)
|
106 |
+
torch.manual_seed(1337 + seed_offset)
|
107 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
108 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
109 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
110 |
+
# note: float16 data type will automatically use a GradScaler
|
111 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
112 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
113 |
+
|
114 |
+
# poor man's data loader
|
115 |
+
data_dir = os.path.join('data', dataset)
|
116 |
+
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
|
117 |
+
val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
|
118 |
+
def get_batch(split):
|
119 |
+
data = train_data if split == 'train' else val_data
|
120 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
121 |
+
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
|
122 |
+
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
|
123 |
+
if device_type == 'cuda':
|
124 |
+
# pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
|
125 |
+
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
126 |
+
else:
|
127 |
+
x, y = x.to(device), y.to(device)
|
128 |
+
return x, y
|
129 |
+
|
130 |
+
# init these up here, can override if init_from='resume' (i.e. from a checkpoint)
|
131 |
+
iter_num = 0
|
132 |
+
best_val_loss = 1e9
|
133 |
+
|
134 |
+
# attempt to derive vocab_size from the dataset
|
135 |
+
meta_path = os.path.join(data_dir, 'meta.pkl')
|
136 |
+
meta_vocab_size = None
|
137 |
+
if os.path.exists(meta_path):
|
138 |
+
with open(meta_path, 'rb') as f:
|
139 |
+
meta = pickle.load(f)
|
140 |
+
meta_vocab_size = meta['vocab_size']
|
141 |
+
print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")
|
142 |
+
|
143 |
+
# model init
|
144 |
+
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
|
145 |
+
bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line
|
146 |
+
if init_from == 'scratch':
|
147 |
+
# init a new model from scratch
|
148 |
+
print("Initializing a new model from scratch")
|
149 |
+
# determine the vocab size we'll use for from-scratch training
|
150 |
+
if meta_vocab_size is None:
|
151 |
+
print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
|
152 |
+
model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
|
153 |
+
gptconf = GPTConfig(**model_args)
|
154 |
+
model = GPT(gptconf)
|
155 |
+
elif init_from == 'resume':
|
156 |
+
print(f"Resuming training from {out_dir}")
|
157 |
+
# resume training from a checkpoint.
|
158 |
+
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
159 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
160 |
+
checkpoint_model_args = checkpoint['model_args']
|
161 |
+
# force these config attributes to be equal otherwise we can't even resume training
|
162 |
+
# the rest of the attributes (e.g. dropout) can stay as desired from command line
|
163 |
+
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
|
164 |
+
model_args[k] = checkpoint_model_args[k]
|
165 |
+
# create the model
|
166 |
+
gptconf = GPTConfig(**model_args)
|
167 |
+
model = GPT(gptconf)
|
168 |
+
state_dict = checkpoint['model']
|
169 |
+
# fix the keys of the state dictionary :(
|
170 |
+
# honestly no idea how checkpoints sometimes get this prefix, have to debug more
|
171 |
+
unwanted_prefix = '_orig_mod.'
|
172 |
+
for k,v in list(state_dict.items()):
|
173 |
+
if k.startswith(unwanted_prefix):
|
174 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
175 |
+
model.load_state_dict(state_dict)
|
176 |
+
iter_num = checkpoint['iter_num']
|
177 |
+
best_val_loss = checkpoint['best_val_loss']
|
178 |
+
elif init_from.startswith('gpt2'):
|
179 |
+
print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
|
180 |
+
# initialize from OpenAI GPT-2 weights
|
181 |
+
override_args = dict(dropout=dropout)
|
182 |
+
model = GPT.from_pretrained(init_from, override_args)
|
183 |
+
# read off the created config params, so we can store them into checkpoint correctly
|
184 |
+
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
|
185 |
+
model_args[k] = getattr(model.config, k)
|
186 |
+
# crop down the model block size if desired, using model surgery
|
187 |
+
if block_size < model.config.block_size:
|
188 |
+
model.crop_block_size(block_size)
|
189 |
+
model_args['block_size'] = block_size # so that the checkpoint will have the right value
|
190 |
+
model.to(device)
|
191 |
+
|
192 |
+
# initialize a GradScaler. If enabled=False scaler is a no-op
|
193 |
+
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
|
194 |
+
|
195 |
+
# optimizer
|
196 |
+
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
|
197 |
+
if init_from == 'resume':
|
198 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
199 |
+
checkpoint = None # free up memory
|
200 |
+
|
201 |
+
# compile the model
|
202 |
+
if compile:
|
203 |
+
print("compiling the model... (takes a ~minute)")
|
204 |
+
unoptimized_model = model
|
205 |
+
model = torch.compile(model) # requires PyTorch 2.0
|
206 |
+
|
207 |
+
# wrap model into DDP container
|
208 |
+
if ddp:
|
209 |
+
model = DDP(model, device_ids=[ddp_local_rank])
|
210 |
+
|
211 |
+
# helps estimate an arbitrarily accurate loss over either split using many batches
|
212 |
+
@torch.no_grad()
|
213 |
+
def estimate_loss():
|
214 |
+
out = {}
|
215 |
+
model.eval()
|
216 |
+
for split in ['train', 'val']:
|
217 |
+
losses = torch.zeros(eval_iters)
|
218 |
+
for k in range(eval_iters):
|
219 |
+
X, Y = get_batch(split)
|
220 |
+
with ctx:
|
221 |
+
logits, loss = model(X, Y)
|
222 |
+
losses[k] = loss.item()
|
223 |
+
out[split] = losses.mean()
|
224 |
+
model.train()
|
225 |
+
return out
|
226 |
+
|
227 |
+
# learning rate decay scheduler (cosine with warmup)
|
228 |
+
def get_lr(it):
|
229 |
+
# 1) linear warmup for warmup_iters steps
|
230 |
+
if it < warmup_iters:
|
231 |
+
return learning_rate * it / warmup_iters
|
232 |
+
# 2) if it > lr_decay_iters, return min learning rate
|
233 |
+
if it > lr_decay_iters:
|
234 |
+
return min_lr
|
235 |
+
# 3) in between, use cosine decay down to min learning rate
|
236 |
+
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
237 |
+
assert 0 <= decay_ratio <= 1
|
238 |
+
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
|
239 |
+
return min_lr + coeff * (learning_rate - min_lr)
|
240 |
+
|
241 |
+
# logging
|
242 |
+
if wandb_log and master_process:
|
243 |
+
import wandb
|
244 |
+
wandb.init(project=wandb_project, name=wandb_run_name, config=config)
|
245 |
+
|
246 |
+
# training loop
|
247 |
+
X, Y = get_batch('train') # fetch the very first batch
|
248 |
+
t0 = time.time()
|
249 |
+
local_iter_num = 0 # number of iterations in the lifetime of this process
|
250 |
+
raw_model = model.module if ddp else model # unwrap DDP container if needed
|
251 |
+
running_mfu = -1.0
|
252 |
+
while True:
|
253 |
+
|
254 |
+
# determine and set the learning rate for this iteration
|
255 |
+
lr = get_lr(iter_num) if decay_lr else learning_rate
|
256 |
+
for param_group in optimizer.param_groups:
|
257 |
+
param_group['lr'] = lr
|
258 |
+
|
259 |
+
# evaluate the loss on train/val sets and write checkpoints
|
260 |
+
if iter_num % eval_interval == 0 and master_process:
|
261 |
+
losses = estimate_loss()
|
262 |
+
print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
|
263 |
+
if wandb_log:
|
264 |
+
wandb.log({
|
265 |
+
"iter": iter_num,
|
266 |
+
"train/loss": losses['train'],
|
267 |
+
"val/loss": losses['val'],
|
268 |
+
"lr": lr,
|
269 |
+
"mfu": running_mfu*100, # convert to percentage
|
270 |
+
})
|
271 |
+
if losses['val'] < best_val_loss or always_save_checkpoint:
|
272 |
+
best_val_loss = losses['val']
|
273 |
+
if iter_num > 0:
|
274 |
+
checkpoint = {
|
275 |
+
'model': raw_model.state_dict(),
|
276 |
+
'optimizer': optimizer.state_dict(),
|
277 |
+
'model_args': model_args,
|
278 |
+
'iter_num': iter_num,
|
279 |
+
'best_val_loss': best_val_loss,
|
280 |
+
'config': config,
|
281 |
+
}
|
282 |
+
print(f"saving checkpoint to {out_dir}")
|
283 |
+
torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
|
284 |
+
if iter_num == 0 and eval_only:
|
285 |
+
break
|
286 |
+
|
287 |
+
# forward backward update, with optional gradient accumulation to simulate larger batch size
|
288 |
+
# and using the GradScaler if data type is float16
|
289 |
+
for micro_step in range(gradient_accumulation_steps):
|
290 |
+
if ddp:
|
291 |
+
# in DDP training we only need to sync gradients at the last micro step.
|
292 |
+
# the official way to do this is with model.no_sync() context manager, but
|
293 |
+
# I really dislike that this bloats the code and forces us to repeat code
|
294 |
+
# looking at the source of that context manager, it just toggles this variable
|
295 |
+
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
|
296 |
+
with ctx:
|
297 |
+
logits, loss = model(X, Y)
|
298 |
+
loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
|
299 |
+
# immediately async prefetch next batch while model is doing the forward pass on the GPU
|
300 |
+
X, Y = get_batch('train')
|
301 |
+
# backward pass, with gradient scaling if training in fp16
|
302 |
+
scaler.scale(loss).backward()
|
303 |
+
# clip the gradient
|
304 |
+
if grad_clip != 0.0:
|
305 |
+
scaler.unscale_(optimizer)
|
306 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
|
307 |
+
# step the optimizer and scaler if training in fp16
|
308 |
+
scaler.step(optimizer)
|
309 |
+
scaler.update()
|
310 |
+
# flush the gradients as soon as we can, no need for this memory anymore
|
311 |
+
optimizer.zero_grad(set_to_none=True)
|
312 |
+
|
313 |
+
# timing and logging
|
314 |
+
t1 = time.time()
|
315 |
+
dt = t1 - t0
|
316 |
+
t0 = t1
|
317 |
+
if iter_num % log_interval == 0 and master_process:
|
318 |
+
# get loss as float. note: this is a CPU-GPU sync point
|
319 |
+
# scale up to undo the division above, approximating the true total loss (exact would have been a sum)
|
320 |
+
lossf = loss.item() * gradient_accumulation_steps
|
321 |
+
if local_iter_num >= 5: # let the training loop settle a bit
|
322 |
+
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
|
323 |
+
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
|
324 |
+
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
|
325 |
+
iter_num += 1
|
326 |
+
local_iter_num += 1
|
327 |
+
|
328 |
+
# termination conditions
|
329 |
+
if iter_num > max_iters:
|
330 |
+
break
|
331 |
+
|
332 |
+
if ddp:
|
333 |
+
destroy_process_group()
|
transformer_sizing.ipynb
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"### Transformer Theoretical Model\n",
|
9 |
+
"\n",
|
10 |
+
"This notebook stores a bunch of analysis about a Transformer, e.g. estimates the number of FLOPs, parameters, peak memory footprint, checkpoint size, etc."
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 1,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"from collections import OrderedDict"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 2,
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"# config_args = {\n",
|
29 |
+
"# 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params\n",
|
30 |
+
"# 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params\n",
|
31 |
+
"# 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params\n",
|
32 |
+
"# 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params\n",
|
33 |
+
"# }[model_type]\n",
|
34 |
+
"\n",
|
35 |
+
"block_size = 1024\n",
|
36 |
+
"vocab_size = 50257\n",
|
37 |
+
"n_layer = 12\n",
|
38 |
+
"n_head = 12\n",
|
39 |
+
"n_embd = 768\n",
|
40 |
+
"bias = False\n",
|
41 |
+
"assert not bias, \"this notebook assumes bias=False just for simplicity\""
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 3,
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [
|
49 |
+
{
|
50 |
+
"name": "stdout",
|
51 |
+
"output_type": "stream",
|
52 |
+
"text": [
|
53 |
+
"we see: 124337664, expected: 124337664, match: True\n",
|
54 |
+
"name params ratio (%) \n",
|
55 |
+
"emebedding/position 786432 0.6325\n",
|
56 |
+
"embedding/token 38597376 31.0424\n",
|
57 |
+
"embedding 39383808 31.6749\n",
|
58 |
+
"attention/ln 768 0.0006\n",
|
59 |
+
"attention/kqv 1769472 1.4231\n",
|
60 |
+
"attention/proj 589824 0.4744\n",
|
61 |
+
"attention 2360064 1.8981\n",
|
62 |
+
"mlp/ln 768 0.0006\n",
|
63 |
+
"mlp/ffw 2359296 1.8975\n",
|
64 |
+
"mlp/proj 2359296 1.8975\n",
|
65 |
+
"mlp 4719360 3.7956\n",
|
66 |
+
"block 7079424 5.6937\n",
|
67 |
+
"transformer 84953088 68.3245\n",
|
68 |
+
"ln_f 768 0.0006\n",
|
69 |
+
"dense 0 0.0000\n",
|
70 |
+
"total 124337664 100.0000\n"
|
71 |
+
]
|
72 |
+
}
|
73 |
+
],
|
74 |
+
"source": [
|
75 |
+
"def params():\n",
|
76 |
+
" \"\"\" estimates the number of parameters in the model\"\"\"\n",
|
77 |
+
" out = OrderedDict()\n",
|
78 |
+
"\n",
|
79 |
+
" # token and position embeddings\n",
|
80 |
+
" out['emebedding/position'] = n_embd * block_size\n",
|
81 |
+
" out['embedding/token'] = n_embd * vocab_size\n",
|
82 |
+
" out['embedding'] = out['emebedding/position'] + out['embedding/token']\n",
|
83 |
+
"\n",
|
84 |
+
" # attention blocks\n",
|
85 |
+
" out['attention/ln'] = n_embd # note, bias=False in our LN\n",
|
86 |
+
" out['attention/kqv'] = n_embd * 3*n_embd\n",
|
87 |
+
" out['attention/proj'] = n_embd**2\n",
|
88 |
+
" out['attention'] = out['attention/ln'] + out['attention/kqv'] + out['attention/proj']\n",
|
89 |
+
"\n",
|
90 |
+
" # MLP blocks\n",
|
91 |
+
" ffw_size = 4*n_embd # feed forward size\n",
|
92 |
+
" out['mlp/ln'] = n_embd\n",
|
93 |
+
" out['mlp/ffw'] = n_embd * ffw_size\n",
|
94 |
+
" out['mlp/proj'] = ffw_size * n_embd\n",
|
95 |
+
" out['mlp'] = out['mlp/ln'] + out['mlp/ffw'] + out['mlp/proj']\n",
|
96 |
+
" \n",
|
97 |
+
" # the transformer and the rest of it\n",
|
98 |
+
" out['block'] = out['attention'] + out['mlp']\n",
|
99 |
+
" out['transformer'] = n_layer * out['block']\n",
|
100 |
+
" out['ln_f'] = n_embd # final layernorm\n",
|
101 |
+
" out['dense'] = 0 # 0 because of parameter sharing. This layer uses the weights from the embedding layer\n",
|
102 |
+
"\n",
|
103 |
+
" # total\n",
|
104 |
+
" out['total'] = out['embedding'] + out['transformer'] + out['ln_f'] + out['dense']\n",
|
105 |
+
"\n",
|
106 |
+
" return out\n",
|
107 |
+
"\n",
|
108 |
+
"# compare our param count to that reported by PyTorch\n",
|
109 |
+
"p = params()\n",
|
110 |
+
"params_total = p['total']\n",
|
111 |
+
"print(f\"we see: {params_total}, expected: {124337664}, match: {params_total == 124337664}\")\n",
|
112 |
+
"# create a header\n",
|
113 |
+
"print(f\"{'name':20s} {'params':10s} {'ratio (%)':10s}\")\n",
|
114 |
+
"for k,v in p.items():\n",
|
115 |
+
" print(f\"{k:20s} {v:10d} {v/params_total*100:10.4f}\")\n",
|
116 |
+
" "
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "code",
|
121 |
+
"execution_count": 4,
|
122 |
+
"metadata": {},
|
123 |
+
"outputs": [
|
124 |
+
{
|
125 |
+
"name": "stdout",
|
126 |
+
"output_type": "stream",
|
127 |
+
"text": [
|
128 |
+
"est checkpoint size: 1.49 GB\n",
|
129 |
+
"measured with wc -c ckpt.pt: 1542470366\n",
|
130 |
+
"fluff ratio: 103.38%\n"
|
131 |
+
]
|
132 |
+
}
|
133 |
+
],
|
134 |
+
"source": [
|
135 |
+
"# we can now calculate the size of each checkpoint\n",
|
136 |
+
"# params are stored in fp32, and the AdamW optimizer has 2 additional buffers per param for statistics\n",
|
137 |
+
"params_bytes = params_total*4\n",
|
138 |
+
"params_and_buffers_bytes = params_bytes + 2*params_bytes\n",
|
139 |
+
"print(f\"est checkpoint size: {params_and_buffers_bytes/1e9:.2f} GB\")\n",
|
140 |
+
"measured_bytes = 1542470366 # from wc -c ckpt.pt\n",
|
141 |
+
"print(f\"measured with wc -c ckpt.pt: {measured_bytes}\")\n",
|
142 |
+
"print(f\"fluff ratio: {measured_bytes/params_and_buffers_bytes*100:.2f}%\")"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"attachments": {},
|
147 |
+
"cell_type": "markdown",
|
148 |
+
"metadata": {},
|
149 |
+
"source": [
|
150 |
+
"We can also estimate the ratio of our GPU memory that will be taken up just by the weights and the buffers inside the AdamW optimizer"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": 5,
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [
|
158 |
+
{
|
159 |
+
"name": "stdout",
|
160 |
+
"output_type": "stream",
|
161 |
+
"text": [
|
162 |
+
"memory ratio taken up just for parameters: 3.73%\n"
|
163 |
+
]
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"gpu_memory = 40e9 # 40 GB A100 GPU, roughly\n",
|
168 |
+
"print(f\"memory ratio taken up just for parameters: {params_and_buffers_bytes / gpu_memory * 100:.2f}%\")"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"attachments": {},
|
173 |
+
"cell_type": "markdown",
|
174 |
+
"metadata": {},
|
175 |
+
"source": [
|
176 |
+
"i.e. not that much of the memory for this tiny model, most of the memory is activations (forward and backward). This of course changes dramatically for larger and larger models."
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"attachments": {},
|
181 |
+
"cell_type": "markdown",
|
182 |
+
"metadata": {},
|
183 |
+
"source": [
|
184 |
+
"Let's estimate FLOPs for a single forward pass."
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"execution_count": 6,
|
190 |
+
"metadata": {},
|
191 |
+
"outputs": [
|
192 |
+
{
|
193 |
+
"name": "stdout",
|
194 |
+
"output_type": "stream",
|
195 |
+
"text": [
|
196 |
+
"name flops ratio (%) \n",
|
197 |
+
"attention/kqv 3623878656 1.2426\n",
|
198 |
+
"attention/scores 1610612736 0.5522\n",
|
199 |
+
"attention/reduce 1610612736 0.5522\n",
|
200 |
+
"attention/proj 1207959552 0.4142\n",
|
201 |
+
"attention 8053063680 2.7612\n",
|
202 |
+
"mlp/ffw1 4831838208 1.6567\n",
|
203 |
+
"mlp/ffw2 4831838208 1.6567\n",
|
204 |
+
"mlp 9663676416 3.3135\n",
|
205 |
+
"block 17716740096 6.0747\n",
|
206 |
+
"transformer 212600881152 72.8963\n",
|
207 |
+
"dense 79047426048 27.1037\n",
|
208 |
+
"forward_total 291648307200 100.0000\n",
|
209 |
+
"backward_total 583296614400 200.0000\n",
|
210 |
+
"total 874944921600 300.0000\n"
|
211 |
+
]
|
212 |
+
}
|
213 |
+
],
|
214 |
+
"source": [
|
215 |
+
"def flops():\n",
|
216 |
+
" # we only count Weight FLOPs, all other layers (LayerNorm, Softmax, etc) are effectively irrelevant\n",
|
217 |
+
" # we count actual FLOPs, not MACs. Hence 2* all over the place\n",
|
218 |
+
" # basically for any matrix multiply A (BxC) @ B (CxD) -> (BxD) flops are 2*B*C*D\n",
|
219 |
+
"\n",
|
220 |
+
" out = OrderedDict()\n",
|
221 |
+
" head_size = n_embd // n_head\n",
|
222 |
+
"\n",
|
223 |
+
" # attention blocks\n",
|
224 |
+
" # 1) the projection to key, query, values\n",
|
225 |
+
" out['attention/kqv'] = 2 * block_size * (n_embd * 3*n_embd)\n",
|
226 |
+
" # 2) calculating the attention scores\n",
|
227 |
+
" out['attention/scores'] = 2 * block_size * block_size * n_embd\n",
|
228 |
+
" # 3) the reduction of the values (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)\n",
|
229 |
+
" out['attention/reduce'] = 2 * n_head * (block_size * block_size * head_size)\n",
|
230 |
+
" # 4) the final linear projection\n",
|
231 |
+
" out['attention/proj'] = 2 * block_size * (n_embd * n_embd)\n",
|
232 |
+
" out['attention'] = sum(out['attention/'+k] for k in ['kqv', 'scores', 'reduce', 'proj'])\n",
|
233 |
+
"\n",
|
234 |
+
" # MLP blocks\n",
|
235 |
+
" ffw_size = 4*n_embd # feed forward size\n",
|
236 |
+
" out['mlp/ffw1'] = 2 * block_size * (n_embd * ffw_size)\n",
|
237 |
+
" out['mlp/ffw2'] = 2 * block_size * (ffw_size * n_embd)\n",
|
238 |
+
" out['mlp'] = out['mlp/ffw1'] + out['mlp/ffw2']\n",
|
239 |
+
"\n",
|
240 |
+
" # the transformer and the rest of it\n",
|
241 |
+
" out['block'] = out['attention'] + out['mlp']\n",
|
242 |
+
" out['transformer'] = n_layer * out['block']\n",
|
243 |
+
" out['dense'] = 2 * block_size * (n_embd * vocab_size)\n",
|
244 |
+
"\n",
|
245 |
+
" # forward,backward,total\n",
|
246 |
+
" out['forward_total'] = out['transformer'] + out['dense']\n",
|
247 |
+
" out['backward_total'] = 2 * out['forward_total'] # use common estimate of bwd = 2*fwd\n",
|
248 |
+
" out['total'] = out['forward_total'] + out['backward_total']\n",
|
249 |
+
"\n",
|
250 |
+
" return out\n",
|
251 |
+
" \n",
|
252 |
+
"# compare our param count to that reported by PyTorch\n",
|
253 |
+
"f = flops()\n",
|
254 |
+
"flops_total = f['forward_total']\n",
|
255 |
+
"print(f\"{'name':20s} {'flops':14s} {'ratio (%)':10s}\")\n",
|
256 |
+
"for k,v in f.items():\n",
|
257 |
+
" print(f\"{k:20s} {v:14d} {v/flops_total*100:10.4f}\")\n",
|
258 |
+
" "
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "code",
|
263 |
+
"execution_count": 7,
|
264 |
+
"metadata": {},
|
265 |
+
"outputs": [
|
266 |
+
{
|
267 |
+
"name": "stdout",
|
268 |
+
"output_type": "stream",
|
269 |
+
"text": [
|
270 |
+
"palm_flops: 875062886400, flops: 874944921600, ratio: 1.0001\n"
|
271 |
+
]
|
272 |
+
}
|
273 |
+
],
|
274 |
+
"source": [
|
275 |
+
"# now here is an estimate copy pasted from the PaLM paper\n",
|
276 |
+
"# this formula is often used to calculate MFU (model flops utilization)\n",
|
277 |
+
"def palm_flops():\n",
|
278 |
+
" \"\"\"estimate of the model flops following PaLM paper formula\"\"\"\n",
|
279 |
+
" # non-embedding model parameters. note that we do not subtract the\n",
|
280 |
+
" # embedding/token params because those are tied and get used in the last layer.\n",
|
281 |
+
" N = params()['total'] - params()['emebedding/position']\n",
|
282 |
+
" L, H, Q, T = n_layer, n_head, n_embd//n_head, block_size\n",
|
283 |
+
" mf_per_token = 6*N + 12*L*H*Q*T\n",
|
284 |
+
" mf = mf_per_token * block_size\n",
|
285 |
+
" return mf\n",
|
286 |
+
"\n",
|
287 |
+
"print(f\"palm_flops: {palm_flops():d}, flops: {flops()['total']:d}, ratio: {palm_flops()/flops()['total']:.4f}\")"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"attachments": {},
|
292 |
+
"cell_type": "markdown",
|
293 |
+
"metadata": {},
|
294 |
+
"source": [
|
295 |
+
"Ok they are quite similar, giving some confidence that my math in flops() function was ~ok. Now, A100 is cited at 312TFLOPS bfloat16 on tensor cores. So what is our model flops utilization (MFU)? I trained the model above with a batch_size of 20 and grad_accum of 5, which runs in about 755ms on a single A100 GPU. We get:"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": 8,
|
301 |
+
"metadata": {},
|
302 |
+
"outputs": [
|
303 |
+
{
|
304 |
+
"name": "stdout",
|
305 |
+
"output_type": "stream",
|
306 |
+
"text": [
|
307 |
+
"fraction of A100 used: 37.14%\n"
|
308 |
+
]
|
309 |
+
}
|
310 |
+
],
|
311 |
+
"source": [
|
312 |
+
"# here is what we currently roughly measure\n",
|
313 |
+
"batch_size = 20 * 5 # 5 is grad_accum, so total batch size is 100\n",
|
314 |
+
"measured_time = 0.755 # in seconds per iteration\n",
|
315 |
+
"measured_throughput = batch_size / measured_time\n",
|
316 |
+
"flops_achieved = f['total'] * measured_throughput\n",
|
317 |
+
"\n",
|
318 |
+
"# A100 is cited to be 312 TFLOPS of bloat16 running on tensor cores\n",
|
319 |
+
"a100_flops_promised = 312e12\n",
|
320 |
+
"\n",
|
321 |
+
"# the fraction of the A100 that we are using:\n",
|
322 |
+
"print(f\"fraction of A100 used: {flops_achieved / a100_flops_promised * 100:.2f}%\")"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"attachments": {},
|
327 |
+
"cell_type": "markdown",
|
328 |
+
"metadata": {},
|
329 |
+
"source": [
|
330 |
+
"For reference, we'd prefer to be somewhere around 50%+, and not just for a single GPU but for an entire DDP run. So we still have some work to do, but at least we're within a factor of ~2X of what is achievable with this GPU."
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"execution_count": 9,
|
336 |
+
"metadata": {},
|
337 |
+
"outputs": [
|
338 |
+
{
|
339 |
+
"name": "stdout",
|
340 |
+
"output_type": "stream",
|
341 |
+
"text": [
|
342 |
+
"time needed to train the model: 3.46 days\n"
|
343 |
+
]
|
344 |
+
}
|
345 |
+
],
|
346 |
+
"source": [
|
347 |
+
"# Finally let's check out the 6ND approximation as total cost of training in FLOPs\n",
|
348 |
+
"model_size = params()['total'] # this is number of parameters, N\n",
|
349 |
+
"tokens_num = 300e9 # 300B tokens, this is dataset size in tokens, D\n",
|
350 |
+
"a100_flops = 312e12 # 312 TFLOPS\n",
|
351 |
+
"assumed_mfu = 0.3 # assume this model flops utilization (take the current 37% from above and add some DDP overhead)\n",
|
352 |
+
"flops_throughput = a100_flops * 8 * assumed_mfu # assume an 8XA100 node at 30% utilization\n",
|
353 |
+
"flops_needed = 6 * model_size * tokens_num # 6ND\n",
|
354 |
+
"time_needed_s = flops_needed / flops_throughput # in seconds\n",
|
355 |
+
"print(f\"time needed to train the model: {time_needed_s/3600/24:.2f} days\")"
|
356 |
+
]
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"attachments": {},
|
360 |
+
"cell_type": "markdown",
|
361 |
+
"metadata": {},
|
362 |
+
"source": [
|
363 |
+
"This is not a bad estimate at all. I trained this model and it converged in roughly 4 days. Btw as a good reference for where 6ND comes from and some intuition around it I recommend [Dzmitry's post](https://medium.com/@dzmitrybahdanau/the-flops-calculus-of-language-model-training-3b19c1f025e4)."
|
364 |
+
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"attachments": {},
|
368 |
+
"cell_type": "markdown",
|
369 |
+
"metadata": {},
|
370 |
+
"source": [
|
371 |
+
"Now, FLOPs are just one constraint, the other that we have to keep a close track of is the memory bandwidth. TODO estimate LOAD/STORE costs of our model later."
|
372 |
+
]
|
373 |
+
}
|
374 |
+
],
|
375 |
+
"metadata": {
|
376 |
+
"kernelspec": {
|
377 |
+
"display_name": "pytorch2",
|
378 |
+
"language": "python",
|
379 |
+
"name": "python3"
|
380 |
+
},
|
381 |
+
"language_info": {
|
382 |
+
"codemirror_mode": {
|
383 |
+
"name": "ipython",
|
384 |
+
"version": 3
|
385 |
+
},
|
386 |
+
"file_extension": ".py",
|
387 |
+
"mimetype": "text/x-python",
|
388 |
+
"name": "python",
|
389 |
+
"nbconvert_exporter": "python",
|
390 |
+
"pygments_lexer": "ipython3",
|
391 |
+
"version": "3.10.8"
|
392 |
+
},
|
393 |
+
"orig_nbformat": 4,
|
394 |
+
"vscode": {
|
395 |
+
"interpreter": {
|
396 |
+
"hash": "7f5833218766b48e6e35e4452ee875aac0e2188d05bbe5298f2c62b79f08b222"
|
397 |
+
}
|
398 |
+
}
|
399 |
+
},
|
400 |
+
"nbformat": 4,
|
401 |
+
"nbformat_minor": 2
|
402 |
+
}
|