Upload whisper_base_old.py
Browse files
modules/whisper/whisper_base_old.py
ADDED
|
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import whisper
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torchaudio
|
| 6 |
+
from abc import ABC, abstractmethod
|
| 7 |
+
from typing import BinaryIO, Union, Tuple, List
|
| 8 |
+
import numpy as np
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
from faster_whisper.vad import VadOptions
|
| 11 |
+
from dataclasses import astuple
|
| 12 |
+
|
| 13 |
+
from modules.uvr.music_separator import MusicSeparator
|
| 14 |
+
from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
|
| 15 |
+
UVR_MODELS_DIR)
|
| 16 |
+
from modules.utils.subtitle_manager import get_srt, get_vtt, get_txt, get_csv, write_file, safe_filename
|
| 17 |
+
from modules.utils.youtube_manager import get_ytdata, get_ytaudio
|
| 18 |
+
from modules.utils.files_manager import get_media_files, format_gradio_files, load_yaml, save_yaml
|
| 19 |
+
from modules.whisper.whisper_parameter import *
|
| 20 |
+
from modules.diarize.diarizer import Diarizer
|
| 21 |
+
from modules.vad.silero_vad import SileroVAD
|
| 22 |
+
from modules.translation.nllb_inference import NLLBInference
|
| 23 |
+
from modules.translation.nllb_inference import NLLB_AVAILABLE_LANGS
|
| 24 |
+
|
| 25 |
+
class WhisperBase(ABC):
|
| 26 |
+
def __init__(self,
|
| 27 |
+
model_dir: str = WHISPER_MODELS_DIR,
|
| 28 |
+
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
| 29 |
+
uvr_model_dir: str = UVR_MODELS_DIR,
|
| 30 |
+
output_dir: str = OUTPUT_DIR,
|
| 31 |
+
):
|
| 32 |
+
self.model_dir = model_dir
|
| 33 |
+
self.output_dir = output_dir
|
| 34 |
+
os.makedirs(self.output_dir, exist_ok=True)
|
| 35 |
+
os.makedirs(self.model_dir, exist_ok=True)
|
| 36 |
+
self.diarizer = Diarizer(
|
| 37 |
+
model_dir=diarization_model_dir
|
| 38 |
+
)
|
| 39 |
+
self.vad = SileroVAD()
|
| 40 |
+
self.music_separator = MusicSeparator(
|
| 41 |
+
model_dir=uvr_model_dir,
|
| 42 |
+
output_dir=os.path.join(output_dir, "UVR")
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
self.model = None
|
| 46 |
+
self.current_model_size = None
|
| 47 |
+
self.available_models = whisper.available_models()
|
| 48 |
+
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
| 49 |
+
#self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
| 50 |
+
self.translatable_models = whisper.available_models()
|
| 51 |
+
self.device = self.get_device()
|
| 52 |
+
self.available_compute_types = ["float16", "float32"]
|
| 53 |
+
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
| 54 |
+
|
| 55 |
+
@abstractmethod
|
| 56 |
+
def transcribe(self,
|
| 57 |
+
audio: Union[str, BinaryIO, np.ndarray],
|
| 58 |
+
progress: gr.Progress = gr.Progress(),
|
| 59 |
+
*whisper_params,
|
| 60 |
+
):
|
| 61 |
+
"""Inference whisper model to transcribe"""
|
| 62 |
+
pass
|
| 63 |
+
|
| 64 |
+
@abstractmethod
|
| 65 |
+
def update_model(self,
|
| 66 |
+
model_size: str,
|
| 67 |
+
compute_type: str,
|
| 68 |
+
progress: gr.Progress = gr.Progress()
|
| 69 |
+
):
|
| 70 |
+
"""Initialize whisper model"""
|
| 71 |
+
pass
|
| 72 |
+
|
| 73 |
+
def run(self,
|
| 74 |
+
audio: Union[str, BinaryIO, np.ndarray],
|
| 75 |
+
progress: gr.Progress = gr.Progress(),
|
| 76 |
+
add_timestamp: bool = True,
|
| 77 |
+
*whisper_params,
|
| 78 |
+
) -> Tuple[List[dict], float]:
|
| 79 |
+
"""
|
| 80 |
+
Run transcription with conditional pre-processing and post-processing.
|
| 81 |
+
The VAD will be performed to remove noise from the audio input in pre-processing, if enabled.
|
| 82 |
+
The diarization will be performed in post-processing, if enabled.
|
| 83 |
+
|
| 84 |
+
Parameters
|
| 85 |
+
----------
|
| 86 |
+
audio: Union[str, BinaryIO, np.ndarray]
|
| 87 |
+
Audio input. This can be file path or binary type.
|
| 88 |
+
progress: gr.Progress
|
| 89 |
+
Indicator to show progress directly in gradio.
|
| 90 |
+
add_timestamp: bool
|
| 91 |
+
Whether to add a timestamp at the end of the filename.
|
| 92 |
+
*whisper_params: tuple
|
| 93 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
| 94 |
+
|
| 95 |
+
Returns
|
| 96 |
+
----------
|
| 97 |
+
segments_result: List[dict]
|
| 98 |
+
list of dicts that includes start, end timestamps and transcribed text
|
| 99 |
+
elapsed_time: float
|
| 100 |
+
elapsed time for running
|
| 101 |
+
"""
|
| 102 |
+
params = WhisperParameters.as_value(*whisper_params)
|
| 103 |
+
|
| 104 |
+
self.cache_parameters(
|
| 105 |
+
whisper_params=params,
|
| 106 |
+
add_timestamp=add_timestamp
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
if params.lang is None:
|
| 110 |
+
pass
|
| 111 |
+
elif params.lang == "Automatic Detection":
|
| 112 |
+
params.lang = None
|
| 113 |
+
else:
|
| 114 |
+
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
| 115 |
+
params.lang = language_code_dict[params.lang]
|
| 116 |
+
|
| 117 |
+
if params.is_bgm_separate:
|
| 118 |
+
music, audio, _ = self.music_separator.separate(
|
| 119 |
+
audio=audio,
|
| 120 |
+
model_name=params.uvr_model_size,
|
| 121 |
+
device=params.uvr_device,
|
| 122 |
+
segment_size=params.uvr_segment_size,
|
| 123 |
+
save_file=params.uvr_save_file,
|
| 124 |
+
progress=progress
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
if audio.ndim >= 2:
|
| 128 |
+
audio = audio.mean(axis=1)
|
| 129 |
+
if self.music_separator.audio_info is None:
|
| 130 |
+
origin_sample_rate = 16000
|
| 131 |
+
else:
|
| 132 |
+
origin_sample_rate = self.music_separator.audio_info.sample_rate
|
| 133 |
+
audio = self.resample_audio(audio=audio, original_sample_rate=origin_sample_rate)
|
| 134 |
+
|
| 135 |
+
if params.uvr_enable_offload:
|
| 136 |
+
self.music_separator.offload()
|
| 137 |
+
|
| 138 |
+
if params.vad_filter:
|
| 139 |
+
# Explicit value set for float('inf') from gr.Number()
|
| 140 |
+
if params.max_speech_duration_s is None or params.max_speech_duration_s >= 9999:
|
| 141 |
+
params.max_speech_duration_s = float('inf')
|
| 142 |
+
|
| 143 |
+
vad_options = VadOptions(
|
| 144 |
+
threshold=params.threshold,
|
| 145 |
+
min_speech_duration_ms=params.min_speech_duration_ms,
|
| 146 |
+
max_speech_duration_s=params.max_speech_duration_s,
|
| 147 |
+
min_silence_duration_ms=params.min_silence_duration_ms,
|
| 148 |
+
speech_pad_ms=params.speech_pad_ms
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
audio, speech_chunks = self.vad.run(
|
| 152 |
+
audio=audio,
|
| 153 |
+
vad_parameters=vad_options,
|
| 154 |
+
progress=progress
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
result, elapsed_time = self.transcribe(
|
| 158 |
+
audio,
|
| 159 |
+
progress,
|
| 160 |
+
*astuple(params)
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
if params.vad_filter:
|
| 164 |
+
result = self.vad.restore_speech_timestamps(
|
| 165 |
+
segments=result,
|
| 166 |
+
speech_chunks=speech_chunks,
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
if params.is_diarize:
|
| 170 |
+
result, elapsed_time_diarization = self.diarizer.run(
|
| 171 |
+
audio=audio,
|
| 172 |
+
use_auth_token=params.hf_token,
|
| 173 |
+
transcribed_result=result,
|
| 174 |
+
)
|
| 175 |
+
elapsed_time += elapsed_time_diarization
|
| 176 |
+
return result, elapsed_time
|
| 177 |
+
|
| 178 |
+
def transcribe_file(self,
|
| 179 |
+
files: Optional[List] = None,
|
| 180 |
+
input_folder_path: Optional[str] = None,
|
| 181 |
+
file_format: str = "SRT",
|
| 182 |
+
add_timestamp: bool = True,
|
| 183 |
+
translate_output: bool = False,
|
| 184 |
+
translate_model: str = "",
|
| 185 |
+
target_lang: str = "",
|
| 186 |
+
progress=gr.Progress(),
|
| 187 |
+
*whisper_params,
|
| 188 |
+
) -> list:
|
| 189 |
+
"""
|
| 190 |
+
Write subtitle file from Files
|
| 191 |
+
|
| 192 |
+
Parameters
|
| 193 |
+
----------
|
| 194 |
+
files: list
|
| 195 |
+
List of files to transcribe from gr.Files()
|
| 196 |
+
input_folder_path: str
|
| 197 |
+
Input folder path to transcribe from gr.Textbox(). If this is provided, `files` will be ignored and
|
| 198 |
+
this will be used instead.
|
| 199 |
+
file_format: str
|
| 200 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 201 |
+
add_timestamp: bool
|
| 202 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
|
| 203 |
+
translate_output: bool
|
| 204 |
+
Translate output
|
| 205 |
+
translate_model: str
|
| 206 |
+
Translation model to use
|
| 207 |
+
target_lang: str
|
| 208 |
+
Target language to use
|
| 209 |
+
progress: gr.Progress
|
| 210 |
+
Indicator to show progress directly in gradio.
|
| 211 |
+
*whisper_params: tuple
|
| 212 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
| 213 |
+
|
| 214 |
+
Returns
|
| 215 |
+
----------
|
| 216 |
+
result_str:
|
| 217 |
+
Result of transcription to return to gr.Textbox()
|
| 218 |
+
result_file_path:
|
| 219 |
+
Output file path to return to gr.Files()
|
| 220 |
+
"""
|
| 221 |
+
try:
|
| 222 |
+
if input_folder_path:
|
| 223 |
+
files = get_media_files(input_folder_path)
|
| 224 |
+
if isinstance(files, str):
|
| 225 |
+
files = [files]
|
| 226 |
+
if files and isinstance(files[0], gr.utils.NamedString):
|
| 227 |
+
files = [file.name for file in files]
|
| 228 |
+
|
| 229 |
+
## Initialization variables & start time
|
| 230 |
+
files_info = {}
|
| 231 |
+
files_to_download = {}
|
| 232 |
+
time_start = datetime.now()
|
| 233 |
+
|
| 234 |
+
## Load parameters related with whisper
|
| 235 |
+
params = WhisperParameters.as_value(*whisper_params)
|
| 236 |
+
|
| 237 |
+
## Load model to detect language
|
| 238 |
+
model = whisper.load_model("base")
|
| 239 |
+
|
| 240 |
+
for file in files:
|
| 241 |
+
|
| 242 |
+
## Detect language
|
| 243 |
+
mel = whisper.log_mel_spectrogram(whisper.pad_or_trim(whisper.load_audio(file))).to(model.device)
|
| 244 |
+
_, probs = model.detect_language(mel)
|
| 245 |
+
file_language = ""
|
| 246 |
+
file_lang_probs = ""
|
| 247 |
+
for key,value in whisper.tokenizer.LANGUAGES.items():
|
| 248 |
+
if key == str(max(probs, key=probs.get)):
|
| 249 |
+
file_language = value.capitalize()
|
| 250 |
+
for key_prob,value_prob in probs.items():
|
| 251 |
+
if key == key_prob:
|
| 252 |
+
file_lang_probs = str((round(value_prob*100)))
|
| 253 |
+
break
|
| 254 |
+
break
|
| 255 |
+
|
| 256 |
+
transcribed_segments, time_for_task = self.run(
|
| 257 |
+
file,
|
| 258 |
+
progress,
|
| 259 |
+
add_timestamp,
|
| 260 |
+
*whisper_params,
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
# Define source language
|
| 264 |
+
source_lang = file_language
|
| 265 |
+
|
| 266 |
+
# Translate to English using Whisper built-in functionality
|
| 267 |
+
transcription_note = ""
|
| 268 |
+
if params.is_translate:
|
| 269 |
+
if source_lang != "English":
|
| 270 |
+
transcription_note = "To English"
|
| 271 |
+
source_lang = "English"
|
| 272 |
+
else:
|
| 273 |
+
transcription_note = "Already in English"
|
| 274 |
+
|
| 275 |
+
# Translate the transcribed segments
|
| 276 |
+
translation_note = ""
|
| 277 |
+
if translate_output:
|
| 278 |
+
if source_lang != target_lang:
|
| 279 |
+
self.nllb_inf = NLLBInference()
|
| 280 |
+
if source_lang in NLLB_AVAILABLE_LANGS.keys():
|
| 281 |
+
transcribed_segments = self.nllb_inf.translate_text(
|
| 282 |
+
input_list_dict=transcribed_segments,
|
| 283 |
+
model_size=translate_model,
|
| 284 |
+
src_lang=source_lang,
|
| 285 |
+
tgt_lang=target_lang,
|
| 286 |
+
speaker_diarization=params.is_diarize
|
| 287 |
+
)
|
| 288 |
+
translation_note = "To " + target_lang
|
| 289 |
+
else:
|
| 290 |
+
translation_note = source_lang + " not supported"
|
| 291 |
+
else:
|
| 292 |
+
translation_note = "Already in " + target_lang
|
| 293 |
+
|
| 294 |
+
## Get preview as txt
|
| 295 |
+
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
| 296 |
+
subtitle = get_txt(transcribed_segments)
|
| 297 |
+
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task, "lang": file_language, "lang_prob": file_lang_probs, "input_source_file": (file_name+file_ext), "translation": translation_note, "transcription": transcription_note}
|
| 298 |
+
|
| 299 |
+
## Add output file as txt
|
| 300 |
+
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
| 301 |
+
subtitle, file_path = self.generate_and_write_file(
|
| 302 |
+
file_name=file_name,
|
| 303 |
+
transcribed_segments=transcribed_segments,
|
| 304 |
+
add_timestamp=add_timestamp,
|
| 305 |
+
file_format="txt",
|
| 306 |
+
output_dir=self.output_dir
|
| 307 |
+
)
|
| 308 |
+
files_to_download[file_name+"_txt"] = {"path": file_path}
|
| 309 |
+
|
| 310 |
+
## Add output file as srt
|
| 311 |
+
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
| 312 |
+
subtitle, file_path = self.generate_and_write_file(
|
| 313 |
+
file_name=file_name,
|
| 314 |
+
transcribed_segments=transcribed_segments,
|
| 315 |
+
add_timestamp=add_timestamp,
|
| 316 |
+
file_format="srt",
|
| 317 |
+
output_dir=self.output_dir
|
| 318 |
+
)
|
| 319 |
+
files_to_download[file_name+"_srt"] = {"path": file_path}
|
| 320 |
+
|
| 321 |
+
## Add output file as csv
|
| 322 |
+
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
| 323 |
+
subtitle, file_path = self.generate_and_write_file(
|
| 324 |
+
file_name=file_name,
|
| 325 |
+
transcribed_segments=transcribed_segments,
|
| 326 |
+
add_timestamp=add_timestamp,
|
| 327 |
+
file_format="csv",
|
| 328 |
+
output_dir=self.output_dir
|
| 329 |
+
)
|
| 330 |
+
files_to_download[file_name+"_csv"] = {"path": file_path}
|
| 331 |
+
|
| 332 |
+
total_result = ''
|
| 333 |
+
total_info = ''
|
| 334 |
+
total_time = 0
|
| 335 |
+
for file_name, info in files_info.items():
|
| 336 |
+
total_result += f'{info["subtitle"]}'
|
| 337 |
+
total_time += info["time_for_task"]
|
| 338 |
+
total_info += f'Input file:\t\t{info["input_source_file"]}\nLanguage:\t{info["lang"]} (probability {info["lang_prob"]}%)\n'
|
| 339 |
+
|
| 340 |
+
if params.is_translate:
|
| 341 |
+
total_info += f'Translation:\t{info["transcription"]}\n\t⤷ Handled by OpenAI Whisper\n'
|
| 342 |
+
|
| 343 |
+
if translate_output:
|
| 344 |
+
total_info += f'Translation:\t{info["translation"]}\n\t⤷ Handled by Facebook NLLB\n'
|
| 345 |
+
|
| 346 |
+
time_end = datetime.now()
|
| 347 |
+
total_info += f"\nTotal processing time: {self.format_time((time_end-time_start).total_seconds())}"
|
| 348 |
+
|
| 349 |
+
result_str = total_result.rstrip("\n")
|
| 350 |
+
result_file_path = [info['path'] for info in files_to_download.values()]
|
| 351 |
+
|
| 352 |
+
return [result_str,result_file_path,total_info]
|
| 353 |
+
|
| 354 |
+
except Exception as e:
|
| 355 |
+
print(f"Error transcribing file: {e}")
|
| 356 |
+
finally:
|
| 357 |
+
self.release_cuda_memory()
|
| 358 |
+
|
| 359 |
+
def transcribe_mic(self,
|
| 360 |
+
mic_audio: str,
|
| 361 |
+
file_format: str = "SRT",
|
| 362 |
+
add_timestamp: bool = True,
|
| 363 |
+
progress=gr.Progress(),
|
| 364 |
+
*whisper_params,
|
| 365 |
+
) -> list:
|
| 366 |
+
"""
|
| 367 |
+
Write subtitle file from microphone
|
| 368 |
+
|
| 369 |
+
Parameters
|
| 370 |
+
----------
|
| 371 |
+
mic_audio: str
|
| 372 |
+
Audio file path from gr.Microphone()
|
| 373 |
+
file_format: str
|
| 374 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 375 |
+
add_timestamp: bool
|
| 376 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
| 377 |
+
progress: gr.Progress
|
| 378 |
+
Indicator to show progress directly in gradio.
|
| 379 |
+
*whisper_params: tuple
|
| 380 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
| 381 |
+
|
| 382 |
+
Returns
|
| 383 |
+
----------
|
| 384 |
+
result_str:
|
| 385 |
+
Result of transcription to return to gr.Textbox()
|
| 386 |
+
result_file_path:
|
| 387 |
+
Output file path to return to gr.Files()
|
| 388 |
+
"""
|
| 389 |
+
try:
|
| 390 |
+
progress(0, desc="Loading Audio...")
|
| 391 |
+
transcribed_segments, time_for_task = self.run(
|
| 392 |
+
mic_audio,
|
| 393 |
+
progress,
|
| 394 |
+
add_timestamp,
|
| 395 |
+
*whisper_params,
|
| 396 |
+
)
|
| 397 |
+
progress(1, desc="Completed!")
|
| 398 |
+
|
| 399 |
+
subtitle, result_file_path = self.generate_and_write_file(
|
| 400 |
+
file_name="Mic",
|
| 401 |
+
transcribed_segments=transcribed_segments,
|
| 402 |
+
add_timestamp=add_timestamp,
|
| 403 |
+
file_format=file_format,
|
| 404 |
+
output_dir=self.output_dir
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 408 |
+
return [result_str, result_file_path]
|
| 409 |
+
except Exception as e:
|
| 410 |
+
print(f"Error transcribing file: {e}")
|
| 411 |
+
finally:
|
| 412 |
+
self.release_cuda_memory()
|
| 413 |
+
|
| 414 |
+
def transcribe_youtube(self,
|
| 415 |
+
youtube_link: str,
|
| 416 |
+
file_format: str = "SRT",
|
| 417 |
+
add_timestamp: bool = True,
|
| 418 |
+
progress=gr.Progress(),
|
| 419 |
+
*whisper_params,
|
| 420 |
+
) -> list:
|
| 421 |
+
"""
|
| 422 |
+
Write subtitle file from Youtube
|
| 423 |
+
|
| 424 |
+
Parameters
|
| 425 |
+
----------
|
| 426 |
+
youtube_link: str
|
| 427 |
+
URL of the Youtube video to transcribe from gr.Textbox()
|
| 428 |
+
file_format: str
|
| 429 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 430 |
+
add_timestamp: bool
|
| 431 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
| 432 |
+
progress: gr.Progress
|
| 433 |
+
Indicator to show progress directly in gradio.
|
| 434 |
+
*whisper_params: tuple
|
| 435 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
| 436 |
+
|
| 437 |
+
Returns
|
| 438 |
+
----------
|
| 439 |
+
result_str:
|
| 440 |
+
Result of transcription to return to gr.Textbox()
|
| 441 |
+
result_file_path:
|
| 442 |
+
Output file path to return to gr.Files()
|
| 443 |
+
"""
|
| 444 |
+
try:
|
| 445 |
+
progress(0, desc="Loading Audio from Youtube...")
|
| 446 |
+
yt = get_ytdata(youtube_link)
|
| 447 |
+
audio = get_ytaudio(yt)
|
| 448 |
+
|
| 449 |
+
transcribed_segments, time_for_task = self.run(
|
| 450 |
+
audio,
|
| 451 |
+
progress,
|
| 452 |
+
add_timestamp,
|
| 453 |
+
*whisper_params,
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
progress(1, desc="Completed!")
|
| 457 |
+
|
| 458 |
+
file_name = safe_filename(yt.title)
|
| 459 |
+
subtitle, result_file_path = self.generate_and_write_file(
|
| 460 |
+
file_name=file_name,
|
| 461 |
+
transcribed_segments=transcribed_segments,
|
| 462 |
+
add_timestamp=add_timestamp,
|
| 463 |
+
file_format=file_format,
|
| 464 |
+
output_dir=self.output_dir
|
| 465 |
+
)
|
| 466 |
+
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 467 |
+
|
| 468 |
+
if os.path.exists(audio):
|
| 469 |
+
os.remove(audio)
|
| 470 |
+
|
| 471 |
+
return [result_str, result_file_path]
|
| 472 |
+
|
| 473 |
+
except Exception as e:
|
| 474 |
+
print(f"Error transcribing file: {e}")
|
| 475 |
+
finally:
|
| 476 |
+
self.release_cuda_memory()
|
| 477 |
+
|
| 478 |
+
@staticmethod
|
| 479 |
+
def generate_and_write_file(file_name: str,
|
| 480 |
+
transcribed_segments: list,
|
| 481 |
+
add_timestamp: bool,
|
| 482 |
+
file_format: str,
|
| 483 |
+
output_dir: str
|
| 484 |
+
) -> str:
|
| 485 |
+
"""
|
| 486 |
+
Writes subtitle file
|
| 487 |
+
|
| 488 |
+
Parameters
|
| 489 |
+
----------
|
| 490 |
+
file_name: str
|
| 491 |
+
Output file name
|
| 492 |
+
transcribed_segments: list
|
| 493 |
+
Text segments transcribed from audio
|
| 494 |
+
add_timestamp: bool
|
| 495 |
+
Determines whether to add a timestamp to the end of the filename.
|
| 496 |
+
file_format: str
|
| 497 |
+
File format to write. Supported formats: [SRT, WebVTT, txt, csv]
|
| 498 |
+
output_dir: str
|
| 499 |
+
Directory path of the output
|
| 500 |
+
|
| 501 |
+
Returns
|
| 502 |
+
----------
|
| 503 |
+
content: str
|
| 504 |
+
Result of the transcription
|
| 505 |
+
output_path: str
|
| 506 |
+
output file path
|
| 507 |
+
"""
|
| 508 |
+
if add_timestamp:
|
| 509 |
+
#timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 510 |
+
timestamp = datetime.now().strftime("%Y%m%d %H%M%S")
|
| 511 |
+
output_path = os.path.join(output_dir, f"{file_name} - {timestamp}")
|
| 512 |
+
else:
|
| 513 |
+
output_path = os.path.join(output_dir, f"{file_name}")
|
| 514 |
+
|
| 515 |
+
file_format = file_format.strip().lower()
|
| 516 |
+
if file_format == "srt":
|
| 517 |
+
content = get_srt(transcribed_segments)
|
| 518 |
+
output_path += '.srt'
|
| 519 |
+
|
| 520 |
+
elif file_format == "webvtt":
|
| 521 |
+
content = get_vtt(transcribed_segments)
|
| 522 |
+
output_path += '.vtt'
|
| 523 |
+
|
| 524 |
+
elif file_format == "txt":
|
| 525 |
+
content = get_txt(transcribed_segments)
|
| 526 |
+
output_path += '.txt'
|
| 527 |
+
|
| 528 |
+
elif file_format == "csv":
|
| 529 |
+
content = get_csv(transcribed_segments)
|
| 530 |
+
output_path += '.csv'
|
| 531 |
+
|
| 532 |
+
write_file(content, output_path)
|
| 533 |
+
return content, output_path
|
| 534 |
+
|
| 535 |
+
@staticmethod
|
| 536 |
+
def format_time(elapsed_time: float) -> str:
|
| 537 |
+
"""
|
| 538 |
+
Get {hours} {minutes} {seconds} time format string
|
| 539 |
+
|
| 540 |
+
Parameters
|
| 541 |
+
----------
|
| 542 |
+
elapsed_time: str
|
| 543 |
+
Elapsed time for transcription
|
| 544 |
+
|
| 545 |
+
Returns
|
| 546 |
+
----------
|
| 547 |
+
Time format string
|
| 548 |
+
"""
|
| 549 |
+
hours, rem = divmod(elapsed_time, 3600)
|
| 550 |
+
minutes, seconds = divmod(rem, 60)
|
| 551 |
+
|
| 552 |
+
time_str = ""
|
| 553 |
+
|
| 554 |
+
hours = round(hours)
|
| 555 |
+
if hours:
|
| 556 |
+
if hours == 1:
|
| 557 |
+
time_str += f"{hours} hour "
|
| 558 |
+
else:
|
| 559 |
+
time_str += f"{hours} hours "
|
| 560 |
+
|
| 561 |
+
minutes = round(minutes)
|
| 562 |
+
if minutes:
|
| 563 |
+
if minutes == 1:
|
| 564 |
+
time_str += f"{minutes} minute "
|
| 565 |
+
else:
|
| 566 |
+
time_str += f"{minutes} minutes "
|
| 567 |
+
|
| 568 |
+
seconds = round(seconds)
|
| 569 |
+
if seconds == 1:
|
| 570 |
+
time_str += f"{seconds} second"
|
| 571 |
+
else:
|
| 572 |
+
time_str += f"{seconds} seconds"
|
| 573 |
+
|
| 574 |
+
return time_str.strip()
|
| 575 |
+
|
| 576 |
+
@staticmethod
|
| 577 |
+
def get_device():
|
| 578 |
+
if torch.cuda.is_available():
|
| 579 |
+
return "cuda"
|
| 580 |
+
elif torch.backends.mps.is_available():
|
| 581 |
+
if not WhisperBase.is_sparse_api_supported():
|
| 582 |
+
# Device `SparseMPS` is not supported for now. See : https://github.com/pytorch/pytorch/issues/87886
|
| 583 |
+
return "cpu"
|
| 584 |
+
return "mps"
|
| 585 |
+
else:
|
| 586 |
+
return "cpu"
|
| 587 |
+
|
| 588 |
+
@staticmethod
|
| 589 |
+
def is_sparse_api_supported():
|
| 590 |
+
if not torch.backends.mps.is_available():
|
| 591 |
+
return False
|
| 592 |
+
|
| 593 |
+
try:
|
| 594 |
+
device = torch.device("mps")
|
| 595 |
+
sparse_tensor = torch.sparse_coo_tensor(
|
| 596 |
+
indices=torch.tensor([[0, 1], [2, 3]]),
|
| 597 |
+
values=torch.tensor([1, 2]),
|
| 598 |
+
size=(4, 4),
|
| 599 |
+
device=device
|
| 600 |
+
)
|
| 601 |
+
return True
|
| 602 |
+
except RuntimeError:
|
| 603 |
+
return False
|
| 604 |
+
|
| 605 |
+
@staticmethod
|
| 606 |
+
def release_cuda_memory():
|
| 607 |
+
"""Release memory"""
|
| 608 |
+
if torch.cuda.is_available():
|
| 609 |
+
torch.cuda.empty_cache()
|
| 610 |
+
torch.cuda.reset_max_memory_allocated()
|
| 611 |
+
|
| 612 |
+
@staticmethod
|
| 613 |
+
def remove_input_files(file_paths: List[str]):
|
| 614 |
+
"""Remove gradio cached files"""
|
| 615 |
+
if not file_paths:
|
| 616 |
+
return
|
| 617 |
+
|
| 618 |
+
for file_path in file_paths:
|
| 619 |
+
if file_path and os.path.exists(file_path):
|
| 620 |
+
os.remove(file_path)
|
| 621 |
+
|
| 622 |
+
@staticmethod
|
| 623 |
+
def cache_parameters(
|
| 624 |
+
whisper_params: WhisperValues,
|
| 625 |
+
add_timestamp: bool
|
| 626 |
+
):
|
| 627 |
+
"""cache parameters to the yaml file"""
|
| 628 |
+
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
| 629 |
+
cached_whisper_param = whisper_params.to_yaml()
|
| 630 |
+
cached_yaml = {**cached_params, **cached_whisper_param}
|
| 631 |
+
cached_yaml["whisper"]["add_timestamp"] = add_timestamp
|
| 632 |
+
|
| 633 |
+
save_yaml(cached_yaml, DEFAULT_PARAMETERS_CONFIG_PATH)
|
| 634 |
+
|
| 635 |
+
@staticmethod
|
| 636 |
+
def resample_audio(audio: Union[str, np.ndarray],
|
| 637 |
+
new_sample_rate: int = 16000,
|
| 638 |
+
original_sample_rate: Optional[int] = None,) -> np.ndarray:
|
| 639 |
+
"""Resamples audio to 16k sample rate, standard on Whisper model"""
|
| 640 |
+
if isinstance(audio, str):
|
| 641 |
+
audio, original_sample_rate = torchaudio.load(audio)
|
| 642 |
+
else:
|
| 643 |
+
if original_sample_rate is None:
|
| 644 |
+
raise ValueError("original_sample_rate must be provided when audio is numpy array.")
|
| 645 |
+
audio = torch.from_numpy(audio)
|
| 646 |
+
resampler = torchaudio.transforms.Resample(orig_freq=original_sample_rate, new_freq=new_sample_rate)
|
| 647 |
+
resampled_audio = resampler(audio).numpy()
|
| 648 |
+
return resampled_audio
|