Delete app.py
Browse files
app.py
DELETED
|
@@ -1,437 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import argparse
|
| 3 |
-
import gradio as gr
|
| 4 |
-
import yaml
|
| 5 |
-
|
| 6 |
-
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, WHISPER_MODELS_DIR,
|
| 7 |
-
INSANELY_FAST_WHISPER_MODELS_DIR, NLLB_MODELS_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
|
| 8 |
-
UVR_MODELS_DIR)
|
| 9 |
-
from modules.utils.files_manager import load_yaml
|
| 10 |
-
from modules.whisper.whisper_factory import WhisperFactory
|
| 11 |
-
from modules.whisper.faster_whisper_inference import FasterWhisperInference
|
| 12 |
-
from modules.whisper.insanely_fast_whisper_inference import InsanelyFastWhisperInference
|
| 13 |
-
from modules.translation.nllb_inference import NLLBInference
|
| 14 |
-
from modules.ui.htmls import *
|
| 15 |
-
from modules.utils.cli_manager import str2bool
|
| 16 |
-
from modules.utils.youtube_manager import get_ytmetas
|
| 17 |
-
from modules.translation.deepl_api import DeepLAPI
|
| 18 |
-
from modules.whisper.whisper_parameter import *
|
| 19 |
-
|
| 20 |
-
### Device info ###
|
| 21 |
-
import torch
|
| 22 |
-
import torchaudio
|
| 23 |
-
import torch.cuda as cuda
|
| 24 |
-
import platform
|
| 25 |
-
from transformers import __version__ as transformers_version
|
| 26 |
-
|
| 27 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
-
num_gpus = cuda.device_count() if torch.cuda.is_available() else 0
|
| 29 |
-
cuda_version = torch.version.cuda if torch.cuda.is_available() else "N/A"
|
| 30 |
-
cudnn_version = torch.backends.cudnn.version() if torch.cuda.is_available() else "N/A"
|
| 31 |
-
os_info = platform.system() + " " + platform.release() + " " + platform.machine()
|
| 32 |
-
|
| 33 |
-
# Get the available VRAM for each GPU (if available)
|
| 34 |
-
vram_info = []
|
| 35 |
-
if torch.cuda.is_available():
|
| 36 |
-
for i in range(cuda.device_count()):
|
| 37 |
-
gpu_properties = cuda.get_device_properties(i)
|
| 38 |
-
vram_info.append(f"**GPU {i}: {gpu_properties.total_memory / 1024**3:.2f} GB**")
|
| 39 |
-
|
| 40 |
-
pytorch_version = torch.__version__
|
| 41 |
-
torchaudio_version = torchaudio.__version__ if 'torchaudio' in dir() else "N/A"
|
| 42 |
-
|
| 43 |
-
device_info = f"""Running on: **{device}**
|
| 44 |
-
|
| 45 |
-
Number of GPUs available: **{num_gpus}**
|
| 46 |
-
|
| 47 |
-
CUDA version: **{cuda_version}**
|
| 48 |
-
|
| 49 |
-
CuDNN version: **{cudnn_version}**
|
| 50 |
-
|
| 51 |
-
PyTorch version: **{pytorch_version}**
|
| 52 |
-
|
| 53 |
-
Torchaudio version: **{torchaudio_version}**
|
| 54 |
-
|
| 55 |
-
Transformers version: **{transformers_version}**
|
| 56 |
-
|
| 57 |
-
Operating system: **{os_info}**
|
| 58 |
-
|
| 59 |
-
Available VRAM:
|
| 60 |
-
\t {', '.join(vram_info) if vram_info else '**N/A**'}
|
| 61 |
-
"""
|
| 62 |
-
### End Device info ###
|
| 63 |
-
|
| 64 |
-
class App:
|
| 65 |
-
def __init__(self, args):
|
| 66 |
-
self.args = args
|
| 67 |
-
self.app = gr.Blocks(css=CSS,theme=gr.themes.Ocean(), title="Whisper", delete_cache=(60, 3600))
|
| 68 |
-
self.whisper_inf = WhisperFactory.create_whisper_inference(
|
| 69 |
-
whisper_type=self.args.whisper_type,
|
| 70 |
-
whisper_model_dir=self.args.whisper_model_dir,
|
| 71 |
-
faster_whisper_model_dir=self.args.faster_whisper_model_dir,
|
| 72 |
-
insanely_fast_whisper_model_dir=self.args.insanely_fast_whisper_model_dir,
|
| 73 |
-
uvr_model_dir=self.args.uvr_model_dir,
|
| 74 |
-
output_dir=self.args.output_dir,
|
| 75 |
-
)
|
| 76 |
-
self.nllb_inf = NLLBInference(
|
| 77 |
-
model_dir=self.args.nllb_model_dir,
|
| 78 |
-
output_dir=os.path.join(self.args.output_dir, "translations")
|
| 79 |
-
)
|
| 80 |
-
self.deepl_api = DeepLAPI(
|
| 81 |
-
output_dir=os.path.join(self.args.output_dir, "translations")
|
| 82 |
-
)
|
| 83 |
-
self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
| 84 |
-
print(f"Use \"{self.args.whisper_type}\" implementation")
|
| 85 |
-
print(f"Device \"{self.whisper_inf.device}\" is detected")
|
| 86 |
-
|
| 87 |
-
def create_whisper_parameters(self):
|
| 88 |
-
|
| 89 |
-
whisper_params = self.default_params["whisper"]
|
| 90 |
-
diarization_params = self.default_params["diarization"]
|
| 91 |
-
vad_params = self.default_params["vad"]
|
| 92 |
-
uvr_params = self.default_params["bgm_separation"]
|
| 93 |
-
|
| 94 |
-
#Translation integration
|
| 95 |
-
translation_params = self.default_params["translation"]
|
| 96 |
-
nllb_params = translation_params["nllb"]
|
| 97 |
-
|
| 98 |
-
with gr.Row():
|
| 99 |
-
with gr.Column(scale=1):
|
| 100 |
-
with gr.Row():
|
| 101 |
-
input_multi = gr.Radio(["Audio", "Video", "Multiple"], label="Process one or multiple files", value="Audio")
|
| 102 |
-
with gr.Row():
|
| 103 |
-
dd_file_format = gr.Dropdown(choices=["CSV","SRT","TXT"], value="CSV", label="Output format", multiselect=True, interactive=True, visible=True)
|
| 104 |
-
with gr.Row():
|
| 105 |
-
cb_timestamp_preview = gr.Checkbox(value=whisper_params["add_timestamp_preview"],label="Show preview with timestamps", interactive=True)
|
| 106 |
-
cb_timestamp_file = gr.Checkbox(value=whisper_params["add_timestamp_file"], label="Add timestamp to filenames", interactive=True)
|
| 107 |
-
with gr.Column(scale=4):
|
| 108 |
-
input_file_audio = gr.Audio(type='filepath', elem_id="audio_input", show_download_button=True, visible=True, interactive=True)
|
| 109 |
-
input_file_video = gr.Video(elem_id="audio_input", show_download_button=True, visible=False, interactive=True)
|
| 110 |
-
input_file_multi = gr.Files(label="Upload one or more audio/video files here", elem_id="audio_input", type='filepath', file_count="multiple", allow_reordering=True, file_types=["audio","video"], visible=False, interactive=True)
|
| 111 |
-
|
| 112 |
-
with gr.Row():
|
| 113 |
-
with gr.Column(scale=4):
|
| 114 |
-
with gr.Row():
|
| 115 |
-
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],label="Model", info="Larger models increase transcription quality, but reduce performance", interactive=True)
|
| 116 |
-
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,value=whisper_params["lang"], label="Language", info="If the language is known upfront, always set it manually", interactive=True)
|
| 117 |
-
with gr.Row():
|
| 118 |
-
dd_translate_model = gr.Dropdown(choices=self.nllb_inf.available_models, value=nllb_params["model_size"],label="Model", info="Model used for translation", interactive=True)
|
| 119 |
-
dd_target_lang = gr.Dropdown(choices=["English","Dutch","French","German"], value=nllb_params["target_lang"],label="Language", info="Language used for output translation", interactive=True)
|
| 120 |
-
with gr.Column(scale=1):
|
| 121 |
-
with gr.Row():
|
| 122 |
-
cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label="Translate to English", info="Translate using OpenAI Whisper's built-in module",interactive=True)
|
| 123 |
-
cb_translate_output = gr.Checkbox(value=translation_params["translate_output"], label="Translate to selected language", info="Translate using Facebook's NLLB",interactive=True)
|
| 124 |
-
|
| 125 |
-
with gr.Accordion("Speaker diarization", open=False, visible=True):
|
| 126 |
-
cb_diarize = gr.Checkbox(value=diarization_params["is_diarize"],label="Use diarization",interactive=True)
|
| 127 |
-
tb_hf_token = gr.Text(label="Token", value=diarization_params["hf_token"],info="An access token is required to use diarization & can be created [here](https://hf.co/settings/tokens). If not done yet for your account, you need to accept the terms & conditions of [diarization](https://huggingface.co/pyannote/speaker-diarization-3.1) & [segmentation](https://huggingface.co/pyannote/segmentation-3.0).")
|
| 128 |
-
dd_diarization_device = gr.Dropdown(label="Device",
|
| 129 |
-
choices=self.whisper_inf.diarizer.get_available_device(),
|
| 130 |
-
value=self.whisper_inf.diarizer.get_device(),
|
| 131 |
-
interactive=True, visible=False)
|
| 132 |
-
|
| 133 |
-
with gr.Accordion("Preprocessing options", open=False, visible=True):
|
| 134 |
-
|
| 135 |
-
with gr.Accordion("Voice Detection Filter", open=False, visible=True):
|
| 136 |
-
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=vad_params["vad_filter"],
|
| 137 |
-
info="Enable to transcribe only detected voice parts",
|
| 138 |
-
interactive=True)
|
| 139 |
-
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
| 140 |
-
value=vad_params["threshold"],
|
| 141 |
-
info="Lower it to be more sensitive to small sounds")
|
| 142 |
-
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
|
| 143 |
-
value=vad_params["min_speech_duration_ms"],
|
| 144 |
-
info="Final speech chunks shorter than this time are thrown out")
|
| 145 |
-
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)",
|
| 146 |
-
value=vad_params["max_speech_duration_s"],
|
| 147 |
-
info="Maximum duration of speech chunks in seconds")
|
| 148 |
-
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
| 149 |
-
value=vad_params["min_silence_duration_ms"],
|
| 150 |
-
info="In the end of each speech chunk wait for this time"
|
| 151 |
-
" before separating it")
|
| 152 |
-
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=vad_params["speech_pad_ms"],
|
| 153 |
-
info="Final speech chunks are padded by this time each side")
|
| 154 |
-
|
| 155 |
-
with gr.Accordion("Background Music Remover Filter", open=False):
|
| 156 |
-
cb_bgm_separation = gr.Checkbox(label="Enable Background Music Remover Filter", value=uvr_params["is_separate_bgm"],
|
| 157 |
-
info="Enable to remove background music by submodel before transcribing",
|
| 158 |
-
interactive=True)
|
| 159 |
-
dd_uvr_device = gr.Dropdown(label="Device",
|
| 160 |
-
value=self.whisper_inf.music_separator.device,
|
| 161 |
-
choices=self.whisper_inf.music_separator.available_devices,
|
| 162 |
-
interactive=True, visible=False)
|
| 163 |
-
dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
|
| 164 |
-
choices=self.whisper_inf.music_separator.available_models,
|
| 165 |
-
interactive=True)
|
| 166 |
-
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0,
|
| 167 |
-
interactive=True, visible=False)
|
| 168 |
-
cb_uvr_save_file = gr.Checkbox(label="Save separated files to output", value=uvr_params["save_file"],
|
| 169 |
-
interactive=True, visible=False)
|
| 170 |
-
cb_uvr_enable_offload = gr.Checkbox(label="Offload sub model after removing background music",value=uvr_params["enable_offload"],
|
| 171 |
-
interactive=True, visible=False)
|
| 172 |
-
|
| 173 |
-
with gr.Accordion("Advanced processing options", open=False, visible=False):
|
| 174 |
-
nb_beam_size = gr.Number(label="Beam Size", value=whisper_params["beam_size"], precision=0, interactive=True,
|
| 175 |
-
info="Beam size to use for decoding.")
|
| 176 |
-
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=whisper_params["log_prob_threshold"], interactive=True,
|
| 177 |
-
info="If the average log probability over sampled tokens is below this value, treat as failed.")
|
| 178 |
-
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=whisper_params["no_speech_threshold"], interactive=True,
|
| 179 |
-
info="If the no speech probability is higher than this value AND the average log probability over sampled tokens is below 'Log Prob Threshold', consider the segment as silent.")
|
| 180 |
-
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types,
|
| 181 |
-
value=self.whisper_inf.current_compute_type, interactive=True,
|
| 182 |
-
allow_custom_value=True,
|
| 183 |
-
info="Select the type of computation to perform.")
|
| 184 |
-
nb_best_of = gr.Number(label="Best Of", value=whisper_params["best_of"], interactive=True,
|
| 185 |
-
info="Number of candidates when sampling with non-zero temperature.")
|
| 186 |
-
nb_patience = gr.Number(label="Patience", value=whisper_params["patience"], interactive=True,
|
| 187 |
-
info="Beam search patience factor.")
|
| 188 |
-
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=whisper_params["condition_on_previous_text"],
|
| 189 |
-
interactive=True,
|
| 190 |
-
info="Condition on previous text during decoding.")
|
| 191 |
-
sld_prompt_reset_on_temperature = gr.Slider(label="Prompt Reset On Temperature", value=whisper_params["prompt_reset_on_temperature"],
|
| 192 |
-
minimum=0, maximum=1, step=0.01, interactive=True,
|
| 193 |
-
info="Resets prompt if temperature is above this value."
|
| 194 |
-
" Arg has effect only if 'Condition On Previous Text' is True.")
|
| 195 |
-
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True,
|
| 196 |
-
info="Initial prompt to use for decoding.")
|
| 197 |
-
sd_temperature = gr.Slider(label="Temperature", value=whisper_params["temperature"], minimum=0.0,
|
| 198 |
-
step=0.01, maximum=1.0, interactive=True,
|
| 199 |
-
info="Temperature for sampling. It can be a tuple of temperatures, which will be successively used upon failures according to either `Compression Ratio Threshold` or `Log Prob Threshold`.")
|
| 200 |
-
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=whisper_params["compression_ratio_threshold"],
|
| 201 |
-
interactive=True,
|
| 202 |
-
info="If the gzip compression ratio is above this value, treat as failed.")
|
| 203 |
-
nb_chunk_length = gr.Number(label="Chunk Length (s)", value=lambda: whisper_params["chunk_length"],
|
| 204 |
-
precision=0,
|
| 205 |
-
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
|
| 206 |
-
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
| 207 |
-
nb_length_penalty = gr.Number(label="Length Penalty", value=whisper_params["length_penalty"],
|
| 208 |
-
info="Exponential length penalty constant.")
|
| 209 |
-
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=whisper_params["repetition_penalty"],
|
| 210 |
-
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
|
| 211 |
-
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=whisper_params["no_repeat_ngram_size"],
|
| 212 |
-
precision=0,
|
| 213 |
-
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
|
| 214 |
-
tb_prefix = gr.Textbox(label="Prefix", value=lambda: whisper_params["prefix"],
|
| 215 |
-
info="Optional text to provide as a prefix for the first window.")
|
| 216 |
-
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=whisper_params["suppress_blank"],
|
| 217 |
-
info="Suppress blank outputs at the beginning of the sampling.")
|
| 218 |
-
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value=whisper_params["suppress_tokens"],
|
| 219 |
-
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
|
| 220 |
-
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=whisper_params["max_initial_timestamp"],
|
| 221 |
-
info="The initial timestamp cannot be later than this.")
|
| 222 |
-
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=whisper_params["word_timestamps"],
|
| 223 |
-
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
|
| 224 |
-
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value=whisper_params["prepend_punctuations"],
|
| 225 |
-
info="If 'Word Timestamps' is True, merge these punctuation symbols with the next word.")
|
| 226 |
-
tb_append_punctuations = gr.Textbox(label="Append Punctuations", value=whisper_params["append_punctuations"],
|
| 227 |
-
info="If 'Word Timestamps' is True, merge these punctuation symbols with the previous word.")
|
| 228 |
-
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=lambda: whisper_params["max_new_tokens"],
|
| 229 |
-
precision=0,
|
| 230 |
-
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
| 231 |
-
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold (sec)",
|
| 232 |
-
value=lambda: whisper_params["hallucination_silence_threshold"],
|
| 233 |
-
info="When 'Word Timestamps' is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
| 234 |
-
tb_hotwords = gr.Textbox(label="Hotwords", value=lambda: whisper_params["hotwords"],
|
| 235 |
-
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
|
| 236 |
-
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold", value=lambda: whisper_params["language_detection_threshold"],
|
| 237 |
-
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
|
| 238 |
-
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=lambda: whisper_params["language_detection_segments"],
|
| 239 |
-
precision=0,
|
| 240 |
-
info="Number of segments to consider for the language detection.")
|
| 241 |
-
with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
| 242 |
-
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
#dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
| 246 |
-
|
| 247 |
-
return (
|
| 248 |
-
WhisperParameters(
|
| 249 |
-
model_size=dd_model, lang=dd_lang, is_translate=cb_translate, beam_size=nb_beam_size,
|
| 250 |
-
log_prob_threshold=nb_log_prob_threshold, no_speech_threshold=nb_no_speech_threshold,
|
| 251 |
-
compute_type=dd_compute_type, best_of=nb_best_of, patience=nb_patience,
|
| 252 |
-
condition_on_previous_text=cb_condition_on_previous_text, initial_prompt=tb_initial_prompt,
|
| 253 |
-
temperature=sd_temperature, compression_ratio_threshold=nb_compression_ratio_threshold,
|
| 254 |
-
vad_filter=cb_vad_filter, threshold=sd_threshold, min_speech_duration_ms=nb_min_speech_duration_ms,
|
| 255 |
-
max_speech_duration_s=nb_max_speech_duration_s, min_silence_duration_ms=nb_min_silence_duration_ms,
|
| 256 |
-
speech_pad_ms=nb_speech_pad_ms, chunk_length=nb_chunk_length, batch_size=nb_batch_size,
|
| 257 |
-
is_diarize=cb_diarize, hf_token=tb_hf_token, diarization_device=dd_diarization_device,
|
| 258 |
-
length_penalty=nb_length_penalty, repetition_penalty=nb_repetition_penalty,
|
| 259 |
-
no_repeat_ngram_size=nb_no_repeat_ngram_size, prefix=tb_prefix, suppress_blank=cb_suppress_blank,
|
| 260 |
-
suppress_tokens=tb_suppress_tokens, max_initial_timestamp=nb_max_initial_timestamp,
|
| 261 |
-
word_timestamps=cb_word_timestamps, prepend_punctuations=tb_prepend_punctuations,
|
| 262 |
-
append_punctuations=tb_append_punctuations, max_new_tokens=nb_max_new_tokens,
|
| 263 |
-
hallucination_silence_threshold=nb_hallucination_silence_threshold, hotwords=tb_hotwords,
|
| 264 |
-
language_detection_threshold=nb_language_detection_threshold,
|
| 265 |
-
language_detection_segments=nb_language_detection_segments,
|
| 266 |
-
prompt_reset_on_temperature=sld_prompt_reset_on_temperature, is_bgm_separate=cb_bgm_separation,
|
| 267 |
-
uvr_device=dd_uvr_device, uvr_model_size=dd_uvr_model_size, uvr_segment_size=nb_uvr_segment_size,
|
| 268 |
-
uvr_save_file=cb_uvr_save_file, uvr_enable_offload=cb_uvr_enable_offload
|
| 269 |
-
),
|
| 270 |
-
input_multi,
|
| 271 |
-
input_file_audio,
|
| 272 |
-
input_file_video,
|
| 273 |
-
input_file_multi,
|
| 274 |
-
dd_file_format,
|
| 275 |
-
cb_timestamp_file,
|
| 276 |
-
cb_translate_output,
|
| 277 |
-
dd_translate_model,
|
| 278 |
-
dd_target_lang,
|
| 279 |
-
cb_timestamp_preview,
|
| 280 |
-
cb_diarize
|
| 281 |
-
)
|
| 282 |
-
|
| 283 |
-
def launch(self):
|
| 284 |
-
translation_params = self.default_params["translation"]
|
| 285 |
-
deepl_params = translation_params["deepl"]
|
| 286 |
-
nllb_params = translation_params["nllb"]
|
| 287 |
-
uvr_params = self.default_params["bgm_separation"]
|
| 288 |
-
general_params = self.default_params["general"]
|
| 289 |
-
|
| 290 |
-
with self.app:
|
| 291 |
-
|
| 292 |
-
website_title = str(general_params["website_title"]).strip()
|
| 293 |
-
website_subtitle = str(general_params["website_subtitle"]).strip()
|
| 294 |
-
disclaimer_text = str(general_params["disclaimer_text"]).strip()
|
| 295 |
-
disclaimer_show = general_params["disclaimer_show"]
|
| 296 |
-
disclaimer_popup = general_params["disclaimer_popup"]
|
| 297 |
-
|
| 298 |
-
with gr.Row():
|
| 299 |
-
#with gr.Column():
|
| 300 |
-
#gr.Markdown(MARKDOWN, elem_id="md_project")
|
| 301 |
-
|
| 302 |
-
with gr.Column(scale=3):
|
| 303 |
-
gr.Markdown("# " + website_title, elem_id="md_title")
|
| 304 |
-
if website_subtitle:
|
| 305 |
-
gr.Markdown("### " + website_subtitle, elem_id="md_title")
|
| 306 |
-
|
| 307 |
-
with gr.Column(scale=2):
|
| 308 |
-
if disclaimer_show:
|
| 309 |
-
gr.Markdown("###### ⚠ " + disclaimer_text, elem_id="md_disclaimer")
|
| 310 |
-
else:
|
| 311 |
-
gr.Markdown("")
|
| 312 |
-
|
| 313 |
-
with gr.Tabs():
|
| 314 |
-
with gr.TabItem("Transcribe audio/video"): # tab1
|
| 315 |
-
|
| 316 |
-
tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
|
| 317 |
-
info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
|
| 318 |
-
" Leave this field empty if you do not wish to use a local path.",
|
| 319 |
-
visible=self.args.colab,
|
| 320 |
-
value="")
|
| 321 |
-
|
| 322 |
-
whisper_params, input_multi, input_file_audio, input_file_video, input_file_multi, dd_file_format, cb_timestamp_file, cb_translate_output, dd_translate_model, dd_target_lang, cb_timestamp_preview, cb_diarize = self.create_whisper_parameters()
|
| 323 |
-
|
| 324 |
-
with gr.Row():
|
| 325 |
-
btn_run = gr.Button("Transcribe", variant="primary")
|
| 326 |
-
btn_reset = gr.Button(value="Reset")
|
| 327 |
-
btn_reset.click(None,js="window.location.reload()")
|
| 328 |
-
with gr.Row():
|
| 329 |
-
with gr.Column(scale=4):
|
| 330 |
-
#tb_indicator = gr.Textbox(label="Output preview (Always review output generated by AI models)", show_copy_button=True, show_label=True)
|
| 331 |
-
tb_indicator = gr.Dataframe(label="Output preview (Always review output generated by AI models)", headers=["Time","Speaker","Text"], show_search="search", wrap=True, show_label=True, show_copy_button=True, show_fullscreen_button=True, interactive=False)
|
| 332 |
-
with gr.Column(scale=1):
|
| 333 |
-
tb_info = gr.Textbox(label="Output info", interactive=False, show_copy_button=True)
|
| 334 |
-
files_subtitles = gr.Files(label="Output data", interactive=False, file_count="multiple")
|
| 335 |
-
# btn_openfolder = gr.Button('📂', scale=1)
|
| 336 |
-
|
| 337 |
-
params = [input_file_audio, input_file_video, input_file_multi, input_multi, tb_input_folder, dd_file_format, cb_timestamp_file, cb_translate_output, dd_translate_model, dd_target_lang, cb_timestamp_preview, cb_diarize]
|
| 338 |
-
|
| 339 |
-
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
| 340 |
-
inputs=params + whisper_params.as_list(),
|
| 341 |
-
outputs=[tb_indicator, files_subtitles, tb_info])
|
| 342 |
-
#btn_run.click(fn=self.update_dataframe,inputs=[cb_timestamp_preview,cb_diarize],outputs=tb_indicator)
|
| 343 |
-
# btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
| 344 |
-
|
| 345 |
-
input_multi.change(fn=self.update_viewer,inputs=input_multi,outputs=[input_file_audio,input_file_video,input_file_multi])
|
| 346 |
-
|
| 347 |
-
with gr.TabItem("Device info"): # tab2
|
| 348 |
-
with gr.Column():
|
| 349 |
-
gr.Markdown(device_info, label="Hardware info & installed packages")
|
| 350 |
-
|
| 351 |
-
# Launch the app with optional gradio settings
|
| 352 |
-
args = self.args
|
| 353 |
-
|
| 354 |
-
self.app.queue(
|
| 355 |
-
api_open=args.api_open
|
| 356 |
-
).launch(
|
| 357 |
-
share=args.share,
|
| 358 |
-
server_name=args.server_name,
|
| 359 |
-
server_port=args.server_port,
|
| 360 |
-
auth=(args.username, args.password) if args.username and args.password else None,
|
| 361 |
-
root_path=args.root_path,
|
| 362 |
-
inbrowser=args.inbrowser
|
| 363 |
-
)
|
| 364 |
-
|
| 365 |
-
@staticmethod
|
| 366 |
-
def open_folder(folder_path: str):
|
| 367 |
-
if os.path.exists(folder_path):
|
| 368 |
-
os.system(f"start {folder_path}")
|
| 369 |
-
else:
|
| 370 |
-
os.makedirs(folder_path, exist_ok=True)
|
| 371 |
-
print(f"The directory path {folder_path} has newly created.")
|
| 372 |
-
|
| 373 |
-
@staticmethod
|
| 374 |
-
def on_change_models(model_size: str):
|
| 375 |
-
translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
|
| 376 |
-
if model_size not in translatable_model:
|
| 377 |
-
return gr.Checkbox(visible=False, value=False, interactive=False)
|
| 378 |
-
#return gr.Checkbox(visible=True, value=False, label="Translate to English (large models only)", interactive=False)
|
| 379 |
-
else:
|
| 380 |
-
return gr.Checkbox(visible=True, value=False, label="Translate to English", interactive=True)
|
| 381 |
-
|
| 382 |
-
@staticmethod
|
| 383 |
-
def update_viewer(radio_text):
|
| 384 |
-
if radio_text == "Audio":
|
| 385 |
-
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
| 386 |
-
elif radio_text == "Video":
|
| 387 |
-
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 388 |
-
else:
|
| 389 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 390 |
-
|
| 391 |
-
@staticmethod
|
| 392 |
-
def update_dataframe(value_cb_timestamp_preview,value_cb_diarize):
|
| 393 |
-
if value_cb_timestamp_preview==True and value_cb_diarize==True:
|
| 394 |
-
return gr.Dataframe(headers=["Time","Speaker","Text"],column_widths=["10%","10%","80%"])
|
| 395 |
-
elif value_cb_timestamp_preview==True and value_cb_diarize==False:
|
| 396 |
-
return gr.Dataframe(headers=["Time","Text"],column_widths=["10%","90%"])
|
| 397 |
-
elif value_cb_timestamp_preview==False and value_cb_diarize==True:
|
| 398 |
-
return gr.Dataframe(headers=["Speaker","Text"],column_widths=["10%","90%"])
|
| 399 |
-
elif value_cb_timestamp_preview==False and value_cb_diarize==False:
|
| 400 |
-
return gr.Dataframe(headers=["Text"],column_widths=["100%"])
|
| 401 |
-
else:
|
| 402 |
-
return gr.Dataframe(headers=["Text"],column_widths=["100%"])
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
# Create the parser for command-line arguments
|
| 406 |
-
parser = argparse.ArgumentParser()
|
| 407 |
-
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
|
| 408 |
-
help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
|
| 409 |
-
parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
|
| 410 |
-
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
| 411 |
-
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
| 412 |
-
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
|
| 413 |
-
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
|
| 414 |
-
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
|
| 415 |
-
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
|
| 416 |
-
parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
|
| 417 |
-
parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True, help='Enable api or not in Gradio')
|
| 418 |
-
parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True, help='Whether to automatically start Gradio app or not')
|
| 419 |
-
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
|
| 420 |
-
help='Directory path of the whisper model')
|
| 421 |
-
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
|
| 422 |
-
help='Directory path of the faster-whisper model')
|
| 423 |
-
parser.add_argument('--insanely_fast_whisper_model_dir', type=str,
|
| 424 |
-
default=INSANELY_FAST_WHISPER_MODELS_DIR,
|
| 425 |
-
help='Directory path of the insanely-fast-whisper model')
|
| 426 |
-
parser.add_argument('--diarization_model_dir', type=str, default=DIARIZATION_MODELS_DIR,
|
| 427 |
-
help='Directory path of the diarization model')
|
| 428 |
-
parser.add_argument('--nllb_model_dir', type=str, default=NLLB_MODELS_DIR,
|
| 429 |
-
help='Directory path of the Facebook NLLB model')
|
| 430 |
-
parser.add_argument('--uvr_model_dir', type=str, default=UVR_MODELS_DIR,
|
| 431 |
-
help='Directory path of the UVR model')
|
| 432 |
-
parser.add_argument('--output_dir', type=str, default=OUTPUT_DIR, help='Directory path of the outputs')
|
| 433 |
-
_args = parser.parse_args()
|
| 434 |
-
|
| 435 |
-
if __name__ == "__main__":
|
| 436 |
-
app = App(args=_args)
|
| 437 |
-
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|