kyleleey
first commit
98a77e0
import os
import glob
import yaml
import random
import numpy as np
import cv2
import torch
import torchvision.utils as tvutils
import zipfile
import argparse
from ..render.obj import write_obj, write_textured_obj
import einops
import torch.distributed as dist
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def setup_runtime(args):
"""Load configs, initialize CUDA, CuDNN and the random seeds."""
# Setup CUDA
cuda_device_id = args.gpu
if cuda_device_id is not None:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(cuda_device_id)
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
# Setup random seeds for reproducibility
random.seed(args.seed)
np.random.seed(args.seed)
cv2.setRNGSeed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
## Load config
cfgs = {}
if args.config is not None and os.path.isfile(args.config):
cfgs = load_yaml(args.config)
cfgs['config'] = args.config
cfgs['seed'] = args.seed
cfgs['num_workers'] = args.num_workers
cfgs['device'] = f"cuda:{args.rank}" if torch.cuda.is_available() and cuda_device_id is not None else 'cpu'
print(f"Environment: GPU {cuda_device_id} - seed {args.seed}")
return cfgs
def load_yaml(path):
print(f"Loading configs from {path}")
with open(path, 'r') as f:
return yaml.safe_load(f)
def dump_yaml(path, cfgs):
print(f"Saving configs to {path}")
xmkdir(os.path.dirname(path))
with open(path, 'w') as f:
return yaml.safe_dump(cfgs, f)
def xmkdir(path):
"""Create directory PATH recursively if it does not exist."""
os.makedirs(path, exist_ok=True)
def clean_checkpoint(checkpoint_dir, keep_num=2):
if keep_num > 0:
names = list(sorted(
glob.glob(os.path.join(checkpoint_dir, 'checkpoint*.pth'))
))
if len(names) > keep_num:
for name in names[:-keep_num]:
print(f"Deleting obslete checkpoint file {name}")
os.remove(name)
def archive_code(arc_path, filetypes=['.py']):
print(f"Archiving code to {arc_path}")
xmkdir(os.path.dirname(arc_path))
zipf = zipfile.ZipFile(arc_path, 'w', zipfile.ZIP_DEFLATED)
cur_dir = os.getcwd()
flist = []
for ftype in filetypes:
flist.extend(glob.glob(os.path.join(cur_dir, '[!results]*', '**', '*'+ftype), recursive=True)) # ignore results folder
flist.extend(glob.glob(os.path.join(cur_dir, '*'+ftype)))
[zipf.write(f, arcname=f.replace(cur_dir,'archived_code', 1)) for f in flist]
zipf.close()
def get_model_device(model):
return next(model.parameters()).device
def set_requires_grad(nets, requires_grad=False):
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def save_videos(out_fold, imgs, prefix='', suffix='', fnames=None, ext='.mp4', cycle=False):
prefix = prefix + '_' if prefix else ''
suffix = '_' + suffix if suffix else ''
imgs = imgs.transpose(0,1,3,4,2) # BxTxCxHxW -> BxTxHxWxC
for i, fs in enumerate(imgs):
if cycle:
fs = np.concatenate([fs, fs[::-1]], 0)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# fourcc = cv2.VideoWriter_fourcc(*'avc1')
out_fold_i = out_fold[i] if isinstance(out_fold, list) else out_fold
xmkdir(out_fold_i)
if fnames is None:
idx = len(glob.glob(os.path.join(out_fold_i, prefix+'*'+suffix+ext))) +1
fname = '%07d' % idx
else:
fname = fnames[i]
fpath = os.path.join(out_fold_i, prefix+fname+suffix+ext)
vid = cv2.VideoWriter(fpath, fourcc, 5, (fs.shape[2], fs.shape[1]))
[vid.write(np.uint8(f[...,::-1]*255.)) for f in fs]
vid.release()
def save_images(out_fold, imgs, prefix='', suffix='', fnames=None, ext='.png'):
prefix = prefix + '_' if prefix else ''
suffix = '_' + suffix if suffix else ''
imgs = imgs.transpose(0,2,3,1)
for i, img in enumerate(imgs):
img = np.concatenate([np.flip(img[...,:3], -1), img[...,3:]], -1) # RGBA to BGRA
if 'depth' in suffix:
im_out = np.uint16(img*65535.)
else:
im_out = np.uint8(img*255.)
out_fold_i = out_fold[i] if isinstance(out_fold, list) else out_fold
xmkdir(out_fold_i)
if fnames is None:
idx = len(glob.glob(os.path.join(out_fold_i, prefix+'*'+suffix+ext))) +1
fname = '%07d' % idx
else:
fname = fnames[i]
fpath = os.path.join(out_fold_i, prefix+fname+suffix+ext)
cv2.imwrite(fpath, im_out)
def save_txt(out_fold, data, prefix='', suffix='', fnames=None, ext='.txt', fmt='%.6f'):
prefix = prefix + '_' if prefix else ''
suffix = '_' + suffix if suffix else ''
for i, d in enumerate(data):
out_fold_i = out_fold[i] if isinstance(out_fold, list) else out_fold
xmkdir(out_fold_i)
if fnames is None:
idx = len(glob.glob(os.path.join(out_fold_i, prefix+'*'+suffix+ext))) +1
fname = '%07d' % idx
else:
fname = fnames[i]
fpath = os.path.join(out_fold_i, prefix+fname+suffix+ext)
np.savetxt(fpath, d, fmt=fmt, delimiter=', ')
def save_obj(out_fold, meshes=None, save_material=True, feat=None, prefix='', suffix='', fnames=None, resolution=[256, 256], prior_shape=None):
prefix = prefix + '_' if prefix else ''
suffix = '_' + suffix if suffix else ''
if meshes.v_pos is None:
return
batch_size = meshes.v_pos.shape[0]
for i in range(batch_size):
out_fold_i = out_fold[i] if isinstance(out_fold, list) else out_fold
xmkdir(out_fold_i)
if fnames is None:
idx = len(glob.glob(os.path.join(out_fold_i, prefix+'*'+suffix+".obj"))) + 1
fname = '%07d' % idx
else:
fname = fnames[i]
if save_material:
os.makedirs(os.path.join(out_fold_i, fname), exist_ok=True)
write_textured_obj(out_fold_i, f'{fname}/{prefix+suffix}', meshes, i, save_material=save_material, feat=feat, resolution=resolution, prior_shape=prior_shape)
else:
write_obj(out_fold_i, prefix+fname+suffix, meshes, i, save_material=False, feat=feat, resolution=resolution)
def compute_sc_inv_err(d_pred, d_gt, mask=None):
b = d_pred.size(0)
diff = d_pred - d_gt
if mask is not None:
diff = diff * mask
avg = diff.view(b, -1).sum(1) / (mask.view(b, -1).sum(1))
score = (diff - avg.view(b,1,1))**2 * mask
else:
avg = diff.view(b, -1).mean(1)
score = (diff - avg.view(b,1,1))**2
return score # masked error maps
def compute_angular_distance(n1, n2, mask=None):
dist = (n1*n2).sum(3).clamp(-1,1).acos() /np.pi*180
return dist*mask if mask is not None else dist
def save_scores(out_path, scores, header=''):
print('Saving scores to %s' %out_path)
np.savetxt(out_path, scores, fmt='%.8f', delimiter=',\t', header=header)
def image_grid(tensor, nrow=None):
# check if list -> stack to numpy array
if isinstance(tensor, list):
tensor = np.stack(tensor, 0)
# check if numpy array -> convert to torch tensor and swap axes
if isinstance(tensor, np.ndarray):
tensor = torch.from_numpy(tensor).permute(0, 3, 1, 2)
b, c, h, w = tensor.shape
if nrow is None:
nrow = int(np.ceil(b**0.5))
if c == 1:
tensor = tensor.repeat(1, 3, 1, 1)
tensor = tvutils.make_grid(tensor, nrow=nrow, normalize=False)
return tensor
def video_grid(tensor, nrow=None):
return torch.stack([image_grid(t, nrow=nrow) for t in tensor.unbind(1)], 0)
class LazyClass(object):
def __init__(self, cls, *args, **kwargs):
self.cls = cls
self.args = args
self.kwargs = kwargs
self.instance = None
def get_instance(self):
if self.instance is None:
self.instance = self.cls(*self.args, **self.kwargs)
return self.instance
def __call__(self, *args, **kwargs):
return self.get_instance()(*args, **kwargs)
def __getattribute__(self, name):
if name in ['cls', 'args', 'kwargs', 'instance', 'get_instance']:
return super().__getattribute__(name)
else:
return getattr(self.get_instance(), name)
def add_text_to_image(img, text, pos=(12, 12), color=(1, 1, 1), font_scale=1, thickness=2):
if isinstance(img, torch.Tensor):
img = img.permute(1,2,0).cpu().numpy()
# if grayscale -> convert to RGB
if img.shape[2] == 1:
img = np.repeat(img, 3, 2)
img = cv2.putText(np.ascontiguousarray(img), text, pos, cv2.FONT_HERSHEY_SIMPLEX, font_scale, color, thickness)
return img
def image_grid_multi_channel(tensor, pca=False, texts=None, font_scale=0.5):
"""
visualize multi-channel image, each channel is a different greyscale image
tensor: (b, c, h, w)
texts: list of strings of length b
"""
# rescale to [0, 1] for per each sample in batch
tensor = tensor.detach().cpu()
min_ = einops.reduce(tensor, 'b c h w -> b 1 1 1', 'min')
max_ = einops.reduce(tensor, 'b c h w -> b 1 1 1', 'max')
tensor = (tensor - min_) / (max_ - min_)
if pca:
import faiss
(b, c, h, w) = tensor.shape
# reshape the tensor to (b, c*h*w)
# tensor = tensor.reshape(b, c*h*w)
tensor_flat = einops.rearrange(tensor, 'b c h w -> (b h w) c')
pca_mat = faiss.PCAMatrix(c, 3)
pca_mat.train(tensor_flat.numpy())
assert pca_mat.is_trained
tensor_flat_pca = pca_mat.apply_py(tensor_flat.numpy())
tensor = einops.rearrange(tensor_flat_pca, '(b h w) c -> b h w c', b=b, c=3, h=h, w=w)
else:
tensor = einops.rearrange(tensor, 'b c h w -> (b c) 1 h w')
if texts is not None:
# duplicate texts for each channel
texts = [text for text in texts for _ in range(tensor.shape[0] // len(texts))]
tensor = [add_text_to_image(img, text, font_scale=font_scale) for img, text in zip(tensor, texts)]
return image_grid(tensor)
########## DDP Part Taken from: https://github.com/fundamentalvision/Deformable-DETR/blob/main/util/misc.py
def is_main_process():
return get_rank() == 0
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True